زوج استراتيجية التداول كوينغراشيون
إزدواجية استراتيجية التداول بين الزوجين
تعلق هو تداول الزوج ألغو التي تسمح للمستخدم للتبديل على / قبالة اختبارات مختلفة للتكامل المشترك / يعني انحسار انتشار الزوج قبل اتخاذ أي الصفقات. إذا اخترت تشغيل أحد الاختبارات، يتم تسجيل القيمة من الاختبار كنقطة عرض قابلة للعرض من صفحة نتائج باكتست.
الزوج يجري تداولها في هذا ألغو هو إتفس والذهب إتفس (أوسو و غلد)، ولكن يمكنك تعديل هذه كما يحلو لك.
3 اختبارات مختلفة هي:
- وبفعالية، هذا هو اختبار الجذر وحدة لتحديد ما إذا كان انتشار كوينيغراتد.
- كذلك، يتم تضمين وظيفة تبين كيفية استخدام القيم الحرجة من اختبار أدف بدلا من قيمة p.
- هذا هو الوقت المحسوب نظريا، استنادا إلى نافذة تاريخية من البيانات، أن الامر سيستغرق لانتشار يعني يعني العودة نصف المسافة بعد أن تباعدت عن متوسط انتشار.
- بشكل فعال هذا يعود قيمة بين 0 و 1 أن يخبرك ما إذا كانت سلسلة زمنية تتجه أو يعني العودة. كلما كانت القيمة أقرب إلى 0.5 يعني المزيد & كوت؛ راندم & كوت؛ فإن السلاسل الزمنية قد تصرفت تاريخيا. القيم أقل من 0.5 يعني أن السلاسل الزمنية هي العائد، وأعلى 0.5 يعني اتجه. وكلما اقتربت القيمة من 0 تعني مستويات أعلى من متوسط الانعكاس.
- تتعارض أدبيات التداول فيما يتعلق بفائدة الأسد هورست، ولكن أنا تضمينه مع ذلك، ووضعت المفتاح الافتراضي إلى خطأ في الغو.
نتائج الاختبار الخلفي أدناه تتضمن اثنين من هذه الاختبارات:
قيمة p-أدف-تيست، المحسوبة على مدى فترة 63 يوما (مثل 3 أشهر)، مع الحد الأدنى المطلوب من قيمة p 0.20.
لتعديل قيم المعلمة من الاختبارات فقط ننظر في وظيفة تهيئة، لكتل من التعليمات البرمجية التي تبدو مثل هذا. وفيما يلي كيفية تعريف معلمات قيمة p-أدف-تيست:
هنا ترى كيف يوجد قاموس يعرف باسم & # 39؛ stat_filter & # 39؛ والتي يمكنك استخدامها لتخزين المعلمات من كل اختبار. أولا إنشاء قاموس آخر داخل & # 39؛ stat_filter & # 39؛ اسمه & # 39؛ adf_p_value & # 39؛ ومن ثم تحميل في كل من قيم المعلمة ريفنتنت إلى اختبار أدف التي أريد أن تعرف عندما يكون مقبولا لإدخال التجارة. سيتم تحديد هذه المعلمات 5 بالضبط (مثل مفاتيح القاموس) لجميع الاختبارات، كما سترى إذا نظرتم إلى رمز ألغو، ولاحظت adf_critical_value، نصف_ الحياة، hurst_exponent منها يتم تعريفها بعد ذلك. المعلمات 5 هي:
& # 39؛ استخدام & # 39 ؛: منطقي، ترو إذا كنت تريد أن يستخدم ألغو هذا الاختبار.
دعم التردد اليومي.
(واسمحوا لي أن أعرف إذا واجهت مشاكل مع هذا، كما أنا ملاذ 'ق القيام به الكثير من التجارب معها كما لدي مع التكرار اليومي فقط)
يمكنك تكوين هذا ألغو ليتم تشغيلها على البيانات دقيقة لحظيا كذلك. مثلا بناء زوج انتشار باستخدام 15 دقيقة بار إغلاق الأسعار.
أولا، غير المتغير & # 39؛ السياق. trade_freq & # 39؛ من & # 39؛ يوميا & # 39؛ إلى & # 39؛ اللحظي & # 39 ؛:
context. trade_freq = & # 39؛ يوميا & # 39؛ # & # 39؛ يوميا & # 39؛ أو & # 39؛ خلال اليوم & # 39؛
ثم ابحث عن كتلة التعليمات البرمجية هذه أدناه في دالة تهيئة ()، وحدد & # 39؛ intraday_freq & # 39؛ (على سبيل المثال، 15 دقيقة من البارات). ثم، تعيين & # 39؛ run_trading_logic & # 39؛ أن يكون عدد المرات التي تريد أن يتم تطبيق المنطق على بيانات السوق. اخترت 60 مما يعني، تشغيل هذا المنطق كل 60 دقيقة، ولكن إذا كنت ترغب في ذلك، تغييره إلى 1، وسيتم تشغيل المنطق كل دقيقة واحدة (حذار على الرغم من ذلك، وهذا سوف يؤدي في أوقات باكتست طويلة حقا).
المتغير & # 39؛ check_exit_every_minute & # 39؛ يمكن تعيين إلى ترو إذا كنت تريد المنطق ليتم تشغيل كل دقيقة إذا وفقط - إذا كنت حاليا في التجارة. مثلا فإنه يتحقق لمعرفة ما إذا كنت بحاجة إلى الخروج من التداول كل دقيقة بدلا من الانتظار لفترات N التالية (على سبيل المثال 60 دقيقة، كما هو محدد في المتغير run_trading_logic_freq & # 39؛)
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
نفس ألغو تبدأ فقط 9 أشهر في وقت سابق.
شكرا على المشاركة. لقد لاحظت أن هناك وظيفة سوينت في statsmodels. tsa. stattools. هل هناك فرق كبير بين وظيفة سوينت واختبار أدف؟ أي معنى في استخدام كل من؟
لقد أرفقت اختبارا باكتست أدناه يحاول العثور على الاختبار الفردي لكلا الاختبارين لكل زوج، كل يوم. تنويه: ما غالبا ما أعتقد أن يحدث في الثعبان هو في الواقع لا.
لم أكن قد حاولت وظيفة كوينت في ستاتولس بعد، على الرغم من أنني أتصور أنها مشابهة جدا. أنا فقط أخذت لمحة سريعة على التعليمات البرمجية، وانها تعمل على نحو فعال انحدار النسخة المتأخرة من مداخل الإدخال مقابل النسخة غير المتماثلة التي تشبه إلى حد بعيد أدف. وقد يكمن الفرق في كيفية حساب القيم الحرجة.
إن اختبار إنغل-غرانجر يستخدم أيضا في بعض الأحيان لاختبار التكامل المشترك، ولكن لم ألق نظرة على هذا التنفيذ بعد.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
عظيم ألغو. شيء مذهل. مفيد جدا.
مرحبا جوستين / الكل.
هل يمكن أن نقترح كيف يمكنني تشغيل هذا ألغو على أزواج متعددة، بدلا من زوج واحد فقط؟
محاولة جعل فئة التداول أزواج أن يتتبع كل مسك الدفاتر لكل زوج معين. انظر ديفيد الكلاسيكي فلاتر كالمان يتداول الزوج ألغو للحصول على مثال عظيم من التداول أزواج على أساس الطبقة.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
شكرا على مشاركة المعلومات.
لقد استنسخت جاستن ألغو، ولكن عندما أدير باكتست، يبقى الأداء عند 0٪ لكامل نافذة باكتست.
لم أجري أية تغييرات على شفرة المصدر الأصلية.
أي أفكار لماذا هذا سوف يحدث؟
ربما تشغيل الغو في الوضع اليومي وأنها تعمل فقط في وضع دقيقة.
هنا هو بلدي أحدث باكتست من الأصلي جوستين 's الصوم الكبير بدأت فقط 9 أشهر في وقت سابق.
ومن الجدير بالذكر أنه عند نشر الاختبارات الخلفية والشفرات والدفاتر البحثية، فإن القصد من ذلك هو توضيح المنهجية، وتقديم بعض نماذج التعليمات البرمجية لتحفيز عملية التفكير الإبداعي للمجتمع وحفظ الناس بعض الوقت من خلال توفير قطع ولصق الشفرة التي يمكن دمجها في التعليمات البرمجية الخاصة بهم. بأي حال من الأحوال أنا نشر شيء التي تم فحصها بالكامل، وعلى الفور الاستثمار في شكله بالضبط، من خلال أي امتداد من الخيال. وكثيرا ما أكون متحيزا لأمثلة أبسط، بدلا من أمثلة مفرطة التعقيد، وذلك من أجل الاستفادة من مجموعة أوسع من القراء.
أرى أنك أدركت أن اختبار باكتست الذي نشرته أعلاه يبدو أنه فشل بشكل سيئ للغاية خلال فترة زمنية مختلفة. ونحن نرى هذا كثيرا مع الاستراتيجيات التي ننظر إليها، وكثير منها هي الزي الزائد لمجرد فترة 2 سنة في المسابقات التي نقوم بتشغيلها. نحن نحاول العمل مع مالك ألغو وتقديم المشورة حول السبب في أنه قد يكون قد تم تقسيمه عبر الأطر الزمنية المختلفة. ربما يمكنك تمديد التحليل الخاص بي لتقديم لي بعض النصائح لتحسين هذه الاستراتيجية؟ ربما يكون لديك بعض التوصيات حول كيفية دمج نموذج تبديل النظام الذي من المرجح جدا أن يساعد استراتيجية مثل هذا نظرا للإطار الزمني الذي يبدو أنه فشل (الأزمات المالية / السلع الآجلة التي حدثت في أواخر عام 2008). ربما قد يساعد نموذج التحول العشوائي لنظام التقلبات بشكل كبير. إذا كان لديك خبرة في هذا المجال أنا متأكد من أن المجتمع سوف تجد أنه إضافة صلبة لدمجها في استراتيجيات مثل هذه لجعلها أكثر قوة. أنا أعرف.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
لماذا اخترت الزوج أوسو و غلد؟ وأعتقد أن السؤال الأوسع هو هل يمكن أن تقترح عملية المسح من خلال سلة من الأسهم وتحديد ما إذا كان هناك أزواج قابلة للتداول؟ أنا على افتراض اختبارات التكامل المشترك ستكون طريقة واحدة مثل أدف كما كنت تستخدم. سيكون من الرائع إذا كان يمكن أن يكون هناك ألغو لتشغيل من خلال سلة من الأسهم والسيارات تحديد التي من شأنها أن تجعل & كوت؛ جيد & كوت؛ أزواج.
لقد اخترت فقط أوسو / غلد من أجل تكرار هذا المثال الذي يستخدم تلك الأشرطة نفسها، من هذا الكتاب: الأمازون / كوانتيتاتيف-ترادينغ-بيلد-ألغوريثميك-بوسينيس / دب / 0470284889 /
هذا الكتاب هو مقدمة جيدة حقا لتداول زوج أربطة القانون (فضلا عن كتبه الأخرى). جميع التعليمات البرمجية في الكتاب في ماتلاب، لذلك كان بلدي ألغو محاولة لتنفيذه في بايثون، في باكتستر لدينا، ودمج بعض التقنيات الإحصائية الأخرى الموصوفة في جميع أنحاء الكتاب.
كنت على حق، أن فحص مجموعة من أزواج المحتملة هو فكرة بحثية معقولة، ولكن يجب أن تكون على علم ببساطة داتامينينغ. فأنت تريد أولا تحديد أساس اقتصادي معقول يمكن ربط أزواج الأسهم به (على سبيل المثال، أزواج من المخزونات في نفس القطاع ستكون أزواج معقولة من المخزونات للبحث عبرها). إن كتابة خطاب في باكتستر لإنجاز ذلك سيكون واضحا إلى حد ما: أولا يمكنك استخدام قاعدة بيانات مورنينغستار الأساسية للاستيلاء على جميع الأسهم في قطاع الطاقة، وربما حتى التصفية لأسهم الشركات من مجموعة معينة من ماركيكاب (على سبيل المثال فقط منتصف - ، ثم في pre_trading_starts ()، تقوم بحلقة فوق كل زوج من الأسهم يحسب قيمة p أدف (أو غيرها من قانون التكامل المشترك)، والحفاظ على جميع أزواج الأسهم التي تلبي المعايير الخاصة بك، ثم في hand_data () يمكنك تشغيل فقط تلك التي تلبي المعايير من خلال الغو مماثلة لتلك التي شاركت لدخول / الخروج من الصفقات.
نفسي أو شخص ما على فريقنا هنا في Q يمكن محاولة وضع قالب لهذا وتقاسمها.
كذلك يمكنك أن تبحث في هذا المنصب آخر أن يبين كيفية تطوير ألغو واحد الذي يتداول محفظة من أزواج متعددة:
هذا هو ألغو باكتست في أول تعليق من ديفيد إدواردز، هنا:
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
لقد لاحظت في قسم المدونة لديك مفكرة على استخدام محسن بايزي. هل تعرف كيف يمكنني سحبه إلى Q؟ لها حاليا على github..thanks!
Adam، في الوقت الحالي لا يمكن استخدام محسن بايزي من مشاركة المدونة في بيئة Q. وكان ذلك دليلا على فكرة تنفيذ المفهوم. كما ذكرتم، الرمز الذي استخدمته لبلوق وظيفة على جيثب ويمكنك الاشتراك في محاكمة مع سيغوبت للحصول على اسم المستخدم / أبي مفتاح للعمل معها في بيثون الخاصة بك / زيبلين البيئة محليا. تقديم بعض من هذه الطرق البديلة للتحسين كخدمة هو مفهوم مثير للاهتمام الذي سيكون لدينا للتفكير ونحن نطور منصة Q لدينا في المستقبل. شكرا على ملاحظاتك!
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
شكرا جوستين! سيكون أنيق لتكون قادرة على القيام بهذا النوع من التحسين و / أو تقنية سرب الجسيمات في Q :) :)
أعتقد أنني وجدت فجوة في منطق التداول. في قسم تصفية الإحصاء (خطوط.
155-176) تخرج الخوارزمية فورا إذا فشل الاختبار. هذا يمنع فتح الصفقات الجديدة ولكن لا يفعل شيئا للتعامل مع الصفقات القائمة. وتظل الصفقات المفتوحة مفتوحة حتى تمر جميع الاختبارات الإحصائية مرة أخرى وتصل الخوارزمية إلى منطق الخروج القياسي.
وبحلول التصميم، ينبغي أن يكون لدينا أيضا احتمال كبير بأن نكون في تجارة عندما يحدث ذلك بحيث يمكن أن يكون التأثير مرتفعا جدا. المشكلة في الكشف عن هذا هو أنه إذا كانت العلاقة إعادة تأسيس بسرعة لن يعاني الأداء. ولكن إذا أدرجنا فترة زمنية لا تعود فيها العلاقة بسرعة، كما لاحظ فلاديمير، فإن النتائج ملحوظة.
أضفت بضعة أسطر لإغلاق أي من المواقف التي تكون مفتوحة عندما تنهار الاختبارات الإحصائية. ربما هناك طرق أفضل للتعامل مع منطق الخروج، ولكن هذا التغيير البسيط يظهر الفائدة من وجوده هناك. الخوارزمية لا تفعل كذلك خلال فترة الاختبار الأصلي ولكن الأداء يتحسن على مدى فترة طويلة.
(كما أدخلت تغييرا طفيفا على السطرين 20 و 21 لاستخدام الدالة سيد () لتعيين الأصول x و y بدلا من الرمز ()، وبقية الخوارزمية لم تتغير.)
زوج التداول باستخدام أساليب كوبولا بدلا من التكامل المشترك هو الغضب الجديد. أي شخص حاول ذلك؟
زوج التداول باستخدام أساليب كوبولا بدلا من التكامل المشترك هو الجديد.
الغضب. أي شخص حاول ذلك؟
تقدم هذه الورقة مقارنة منهجية لطرق القرنية وطرق التكامل المشترك عند تطبيقها على مخزون منجم الذهب الأمريكي. كما أن الورقة تتناقض مع معايير اختيار الزوج استنادا إلى إحصائية وحدة تغذية المستندات التلقائية، مقياس تاو، سبيرمان، سبيرمان والمسافة. ملاحظة واحدة: ليس المؤلف.
شكرا جوليان. كان لي الذهاب في ذلك والنتائج تبدو جيدة جدا.
أي شيء يمكنك مشاركة أكوا، للعب مع؟
أنا وضعت في الكثير من الموارد (الوقت والمال) للحصول على كوبولاس العمل على Q. ولكن يمكنك استخدام هذا للبدء:
شكرا، كنت أكثر تبحث عن رمز Q للعب مع. روح المشاركة؛)
أنا وضعت الكثير من الوقت (والمال) في زيبلين الحية والجزر أنا وضعت وما زلت حصة. سوف يأتي كارما يوم واحد ودفع كريمة.
بيتر، سأحاول طرح شيء ونشره دون الكشف عن صلتي السرية :)
في ما يلي فئة غوبولا كوبولا. يمكنك استخدامه لتداول زوج أو سلة. اسمحوا لي أن أعرف إذا كان لديك أي أسئلة:
دفتر الملاحظات المرفق حول الاستخدام.
هناك عدة طرق لتنفيذ خوارزمية.
زوج التداول. حساب المبلغ المتداول 0.5 - سدف الشرطي. وينبغي أن يكون هذا يعني العودة. انظر هنا.
هذه الأفكار كافية لمحاولة لبعض الوقت. Peter، أين هي بركاتي؟
عذرا، هناك خطأ ما. حاول مرة أخرى أو اتصل بنا عن طريق إرسال الملاحظات.
لقد أرسلت بنجاح تذكرة دعم.
سيكون فريق الدعم لدينا على اتصال قريبا.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان.
وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان.
وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
دروس.
انظر أيضا الوثائق ومقاطع الفيديو والدردشة.
شياو يان.
زياووي هو المطور الكمي في كوانتكونيكت. حاصل على درجة الماجستير في العلوم المالية من جامعة روتشستر وعمل سابقا في إدارة الاستثمار في غالاكسي كابيتال وويليام ميرسر.
المقالات الأخيرة.
التداول اليومي أزواج ديناميكية باستخدام الارتباط ونهج التكامل المشترك.
في دروس استراتيجية، نشر في 15 أغسطس 2017.
في هذا البرنامج التعليمي ننفذ استراتيجية عالية التردد وأزواج ديناميكية التداول على أساس استراتيجية محايدة السوق محايدة الإحصائية باستخدام نهج على مرحلتين الارتباط والتكامل المشترك. وتستند هذه الاستراتيجية على عمل جورج J. مياو. [1] جورج مياو تجارة عالية التردد وأزواج ديناميكية استنادا إلى التحكيم الإحصائي باستخدام ارتباط ثنائي الاتجاه ونهج التكامل المشترك نسخة إلكترونية طبقنا هذه الاستراتيجية التجارية على أسهم قطاع البنوك في الولايات المتحدة، باكتستد هذه الاستراتيجية مع بيانات الأسهم 10 دقيقة من 2018 إلى 2018. وتؤدي إستراتيجية التداول لدينا إلى عائد سنوي مركب يصل إلى 29.4٪ ونسبة 0.968 شارب.
هذه االستراتيجية مربحة بشكل خاص عندما يكون أداء السوق ضعيفا. وينجم الربح عن سوء التسعير، ومن المرجح أن يحدث سوء تقدير عندما ينخفض السوق أو يزداد التقلب.
وبغية استكشاف هذه الاستراتيجية بشكل أكبر، نقوم بتصميم هذه الاستراتيجية لتكون مرنة. يمكننا تغيير دقة البيانات إلى 5 دقائق، 10 دقيقة أو حتى 30 دقيقة ببساطة عن طريق تغيير المعلمة. كما أنه من الضروري اختيار الأمثل إدخال وإغلاق ووقف الخسارة عتبة. يمكن للجميع أن يكون له / لها نسخة خاصة من هذه الاستراتيجية.
المقدمة.
تجارة التردد العالي (هفت) هي نوع من التداول الكمي يتميز بفترة عقد قصيرة واستخدام طريقة حاسوبية متطورة لتداول الأوراق المالية بسرعة. ويهدف إلى الحصول على أرباح صغيرة على كل تجارة قصيرة الأجل (كارتيا & أمب؛ بينالفا، 2018 [2] كارتا & أمب؛ بينالفا، 2018 أين هي القيمة في تجارة عالية التردد؟ نسخة على الإنترنت).
المراجحة الإحصائية هي الحالة التي يوجد فيها تبسيط إحصائي لواحد أو أكثر من الأصول استنادا إلى القيم المتوقعة لهذه الأصول. عندما يحدث وضع الربح من عدم الكفاءة التسعير بين الأوراق المالية، يمكن للتجار تحديد الوضع التحكيم الإحصائية من خلال نماذج رياضية. وتعتمد المراجحة الإحصائية اعتمادا كبيرا على قدرة أسعار السوق على العودة إلى متوسط تاريخي أو متوقع. ويضع قانون سعر واحد الأساس لهذا الافتراض. (لوب) أن اثنين من الأسهم مع نفس المردود في كل حالة من الطبيعة يجب أن يكون لها نفس القيمة الحالية (غيتيف، غوتزمان، & أمب؛ رووينهورست، 2006 [3] غاتيف، غوتزمان، و رووينهورست، 2006 أزواج التداول: (19) (3)، 797-827 نسخة على الإنترنت) وهكذا، يجب أن يكون سعرين من الأسهم المتبادلة بين الأصول البديلة القريبة مستقرة على المدى الطويل سعر التوازن مع مرور الوقت.
بيانات الوصف.
من أجل الحصول على المزيد من أزواج مع ارتفاع الارتباط، نختار الأسهم في صناعة معينة. من الناحية الاقتصادية، نحن نفضل القطاعات التقليدية لأن الشركات في هذا القطاع هي أكثر عرضة لتكون بدائل قريبة. إذا اخترنا الأسهم N، يمكن حساب عدد من أزواج من قبل. في الاستراتيجية التي أظهرنا استخدمنا 80 أسهم، لذلك لدينا 3160 زوجا في المجموع. استخدمنا بيانات دقيقة وتجميعها إلى دقة أقل، وبالتالي 1 دقيقة هي أعلى دقة لهذه الاستراتيجية.
نهج الترابط.
تقيس العلاقات العلاقة بين اثنين من الأسهم التي لديها اتجاهات الأسعار. أنها تميل إلى التحرك معا، وبالتالي ترتبط. مرشح الارتباط هو الخطوة الأولى لفحص أزواج المرشحين.
النظر في اثنين من الأسهم ألف وباء، وكان معامل الارتباط بين الأسهم الإحصائية التي توفر مقياسا لكيفية ربط اثنين من الأسهم A و B. تم الحصول على معامل الارتباط من المخزون A والمخزون ب.
وحيثما كان متوسط أسعار المخزون A والمخزون B على الترتيب، فإن N يشير إلى نطاق بيانات التداول. في نطاق [-1،1]. وأكثر إيجابية هو، وأكثر إيجابية جمعية الأسهم A والأسهم B هو.
ومع ذلك، فإن تداول الأزواج على أساس نهج الارتباط وحده سيكون له عيب من عدم الاستقرار على مر الزمن. معاملات الارتباط لا تعني بالضرورة انعكاس متوسط بين أسعار زوجي الأسهم. ومن أجل التغلب على المسألة المذكورة أعلاه، استخدم نهج التكامل المشترك كخطوة ثانية من عملية اختيار الأزواج.
نهج التكامل المشترك.
مفهوم التكامل المشترك، وهو نموذج رياضي مبتكر في الاقتصاد وضعت من قبل الحائزين على جائزة نوبل إنغل أند غرانجر [4] إنغل أند غرانجر التكامل المشترك وتصحيح الأخطاء: التمثيل والتقدير والاختبار. إكونوميتريكا، 55 (2)، 251-276. على الانترنت نسخ كوينغراشيون تنص على أنه، في بعض الحالات، على الرغم من اثنين من سلسلة زمنية غير ثابتة معين، تركيبة خطية محددة من المسلسل الزمني اثنين هو في الواقع ثابتة. في كلمة أخرى، وسلسلة زمنية اثنين تتحرك معا في نمط قفل.
تعريف التكامل المشترك هو ما يلي: افترض أن وهما سلسلة زمنية غير ثابتة. إذا كان هناك معلمة مثل أن المعادلة التالية:
كانت عملية ثابتة، ثم سيتم كونتيغراتد. وهذه العملية أداة قوية للتحقيق في اتجاهات الأصول المشتركة في سلاسل زمنية متعددة المتغيرات.
في حالتنا، دعونا وتكون أسعار اثنين من الأسهم A و B على التوالي. وإذا افترض أنه غير ثابت بشكل فردي، توجد معلمة بحيث تكون المعادلة التالية عملية ثابتة.
حيث هو متوسط لنموذج التكامل المشترك. هو عملية ثابتة ومتوسط التبجيل، ويشار إلى بقايا التكامل المشترك. وتعرف المعلمة بمعامل التكامل المشترك. وتمثل المعادلة أعلاه نموذجا للزوج المركب للمخزونين ألف وباء.
من الضروري أن نفهم كيف أن كونتيغراشيون المتبقية جنبا إلى جنب مع معامل التكامل المشترك يحدد اتجاه التداول لدينا. إذا كانت إيجابية، في فترة ثقة معينة، وهذا هو إشارة إلى أن المخزون أ هو مبالغ فيها نسبيا والمخزون B هو أقل من قيمتها نسبيا، ونحن ذاهبون إلى B طويلة وقصيرة A. إذا كان إذا كان سلبيا، ونحن ذاهبون إلى طويلة ألف وباختصار B.
التحقق من التكامل المشترك (جزء قراءة اختياري)
في طريقة إنغل-غرانجر (إنغل & غرانجر، 1987)، قمنا أولا بوضع انحدار مشترك بين المخزون A والمخزون B كما هو موضح في المعادلة أعلاه، ثم تقدير معاملات الانحدار واستخدام المربعات الصغرى العادية (أولس) . في وقت لاحق، اختبرنا الانحدار المتبقية لتحديد ما إذا كان أو لم يكن ثابتا.
تم استخدام اختبار ثابت الأكثر شعبية في مجال التكامل المشترك، واختبار ديكي فولر المعزز (أدف)، على الانحدار المتبقية لتحديد ما إذا كان لديه جذر وحدة.
وقد أعطي اختبار لوجود جذر الوحدة في الانحدار المتبقية باستخدام اختبار أدف من قبل.
حيث هو ثابت، هو معامل على اتجاه الوقت، p هو تأخر ترتيب عملية الانحدار الذاتي، هو مصطلح خطأ ومتسلسلة غير مترابطة.
وعادة ما يكون عدد الفاصل الزمني p في المعادلة غير معروف وبالتالي يجب تقديره. ولتحديد عدد الفاصل الزمني p، استعملت معايير المعلومات المتعلقة باختيار النظام المتأخر. نختار هنا معيار معلومات بايزي (بيك)
حيث T هو حجم العينة.
وجرى بعد ذلك اختبار الجذر للوحدة من أجل الانحدار المتبقي باستخدام اختبار أدف تحت فرضية فارغة مقابل الفرضية البديلة. تم الحصول على قيمة إحصائية لاختبار أدف من قبل.
تتم مقارنة نتيجة الاختبار في المعادلة أعلاه مع القيمة الحرجة لاختبار أدف. إذا كانت نتيجة الاختبار أقل من القيمة الحرجة، ثم يتم رفض فرضية فارغة. وهذا يعني أن الانحدار المتبقي ثابت. وبالتالي، فإن أسعار الأسهم اثنين هي كوينيغراتد.
أزواج استراتيجية التداول.
استراتيجية التداول أزواج يستخدم إشارات التداول على أساس بقايا الانحدار وتمت نمذجة على أنها عملية عائد المتوسطة.
ومن أجل اختيار المخزونات المحتملة لتداول الأزواج، استخدم نهج الترابط والتكامل المشترك على مرحلتين. الخطوة الأولى هي تحديد أزواج الأسهم المحتملة من نفس القطاع، حيث يتم اختيار أزواج الأسهم مع معامل الارتباط 0.9 على الأقل باستخدام نهج الارتباط. الخطوة الثانية هي التحقق من التكامل المشترك للأزواج اجتاز اختبار الارتباط. وإذا كانت قيمة الاختبار للتكامل المشترك مساوية أو أقل من -3.34، وهي القيمة الحرجة عند ذراع ثقة بنسبة 95٪، ترفض الفرضية الباطلة، وبالتالي تكون البقايا ثابتة، ويجتاز الزوج اختبار التكامل المشترك. والخطوة الثالثة هي ترتيب جميع أزواج الأسهم التي اجتازت الاختبار على مرحلتين وفقا لقيم اختبار التكامل المشترك بينهما. كلما كانت قيمة اختبار التكامل المشترك أصغر، يتم تعيين رتبة السهم الأعلى. يتم اختيار المالي للأزواج الأسهم من أعلى رتبة لتداول أزواج.
الخطوة الأخيرة من الاستراتيجية هي تحديد قواعد التداول. لفتح تداول أزواج، يجب أن يتخطى الانحدار المتبقي صعودا وهبوطا الانحراف المعياري الموجب فوق المتوسط أو التراجع وأعلى من الانحراف المعياري السالب دون المتوسط. إذا المتبقية هو إيجابي، نحن قصيرة الأسهم b و مخزون طويل a. إذا كان المتبقي سلبيا، نحن قصيرة الأسهم A وطويلة الأسهم B. عندما تراجع الانحدار (\ epsilon_t \) عاد إلى مستوى معين، يتم إغلاق التداول أزواج. وعلاوة على ذلك، من أجل منع فقدان الكثير على التداول أزواج واحدة، ويستخدم وقف الخسارة لإغلاق أزواج عندما يكون ضرب المتبقية إيجابية أو سلبية الانحراف المعياري.
في فترة التدريب، كل من بيانات التدريب تحتوي على فترة 3 أشهر، وهو حجم نافذة المتداول الديناميكية. مباشرة بعد فترة التدريب، ونحن نبدأ لدينا فترة التداول لمدة شهر واحد، وديناميكية نافذة المتداول تتحول تلقائيا إلى الأمام لتسجيل الأسعار الجديدة للأسهم في كل زوج. بعد فترة التداول الأولى، نستخدم أسعار الأسهم المحدثة لتحديد أزواجنا للتداول مرة أخرى، وبدء فترة تداول أخرى.
تعديل المعلمة.
أداء الاستراتيجية حساس للمعلمات. هناك أساسا أربعة المعلمة لضبط: فتح عتبة، إغلاق عتبة، وقف الخسارة عتبة و دقة البيانات.
وتمثل عتبة الافتتاح عدد المرات التي تتجاوز فيها النسبة المتبقية الانحراف المعياري الذي يحسب بواسطة. افتراضيا وضعناها إلى 2.32 و -2.32، وهو القيمة الحرجة ل 99٪ فاصل الثقة إذا افترضنا المتبقية يتبع التوزيع الطبيعي.
يتم حساب عتبة الإقفال بنفس طريقة عتبة الافتتاح، ونضعها عند 0.5 بشكل افتراضي لإغلاقها في وقت مبكر لمنع المزيد من الاختلاف.
يتم تعيين حد إيقاف الخسارة إلى 4.5. وهذا يعتمد على مستوى التبسيط الذي يمكن أن نتحمله. درجة أعلى لدينا التسامح للخطر، وارتفاع يمكننا تعيين هذه المعلمة. ومع ذلك، إذا وضعنا هذا الرقم منخفضا جدا، فقد يكون لدينا عدد كبير جدا من الأزواج مغلقة قبل الإيقاف لوقف الخسارة.
في هذه الاستراتيجية التجارية سوف نحدد فئة اسمها "أزواج". نحن إدارة أزواج بدلا من الأسهم مباشرة لجعلها أكثر ملاءمة بالنسبة لنا لحساب الارتباط والتكامل المشترك، وتحديث أسعار الأسهم في الزوج والتجارة على أزواج مختارة.
الخطوة 1: أزواج فئة التعريف.
وتتكون الأزواج من اثنين من الأسهم، والأوراق المالية ألف والمخزون B. هذه الفئة لديها العديد من الخصائص. وتشمل الخصائص الأساسية رموز الأسهم A والبورصة B، و داتافريم الباندا التي تحتوي على الوقت والأسعار من اثنين من الأسهم، والخطأ الحالي، والخطأ من داتابوانت الماضي، وقوائم لتسجيل أسعار الأسهم لغرض التحديث. بدلا من تحديث داتافريم كل 5 دقائق، نسجل الأسعار في القوائم لتحديث داتافريم شهريا. وهذا من شأنه تسريع الخوارزمية 10 مرات على الأقل لأن التلاعب داتافريم هو مضيعة للوقت جدا.
يتم استخدام طريقة cor_update كل شهر لتحديث العلاقة بين السهمين في هذا الزوج. كما تستخدم طريقة cointegration_test شهريا للقيام انحدار عملية شريان الحياة للسودان، وإجراء اختبار أدف، وحساب المتوسط والانحراف المعياري للمتبقي. تعين الطريقة أيضا هذه القيم المحسوبة كخصائص لكائن الزوج.
الخطوة 2: توليد وتنظيف أزواج.
تقوم الدالة gener_pairs بإنشاء أزواج باستخدام رموز الأسهم. self. pair_threshold و self. pair_num محددة مسبقا للسيطرة على عدد من أزواج المرشحين. سيتم الاحتفاظ أزواج في self. pair_list وتحديثها طوال فترة باكتستينغ لدينا. وضعنا self. pair_threshold إلى 0.88 و self. pair_num إلى 120 للحد من عدد من أزواج في القائمة. إذا وضعنا أزواج كثيرة جدا في القائمة، فإن باكتستينغ يكون وقتا طويلا جدا.
يتم استدعاء الدالة الزوج_كلان بعد الشاشة ذات المرحلتين. إذا كان الزوج الأول يحتوي على المخزون "أ" و "ب"، ويحتوي الزوج الثاني على "ب" و "ج"، فإننا سنزيل الزوج الثاني لأن الإشارة المتداخلة ستؤدي إلى إزعاج توازن محفظتنا.
الخطوة 3: الاحماء الفترة.
هذا الجزء تحت خطوة أونداتا. وضعنا self. num_bar يساوي لعدد تراديبار في ثلاثة أشهر، والذي يحدده القرار. خلال هذه الفترة نقوم بملء أسعار الأسهم في القوائم، وتعيين قائمة سعر كل سهم إلى الرمز كعقار. ونحن أيضا إزالة الرمز من قائمة الرموز إذا كان لا يوجد لديه بيانات.
الخطوة 4: اختيار أزواج.
هذه العملية أيضا تحت خطوة أونداتا. هذه الخطوة سوف تولد أزواج إذا كانت فترة التداول الأولى من هذه الخوارزمية. إذا لم يكن كذلك، فإنه سيتم تحديث داتافريم ومعامل الارتباط لكل زوج في self. pair_list. بعد أن يكون الزوجين معامل ارتباط أعلى من 0.9 سيتم اختياره في self. selected_pair. ثم سيتم اختبار جميع الأزواج في self. selected_pair على تكاملها المشترك، وسيتم اختيار الأزواج ذات قيمة اختبار أقل من -3.34 إلى القائمة النهائية. هذه الخطوة سوف تحد أيضا من عدد الأسهم في القائمة النهائية، افتراضيا وضعنا self. selected_num إلى 10. self. count هو العلم لحساب عدد داتابوانت تلقينا. وبمجرد أن تصل إلى مبلغ شهر واحد، وهذا يعني يتم تمرير فترة تداول واحدة وسيتم تعيين إلى 0.
الخطوة 5: فترة التجارة.
سيكون طويلا جدا لقراءة ما إذا كنا لصق كل رمز في فترة التداول معا. وبالتالي فإننا سوف فصل التعليمات البرمجية إلى ثلاثة أجزاء: تحديث أزواج، فتح أزواج التداول وإغلاق أزواج التداول. ولكن كل هذه الخطوط تحت أونداتا الخطوة وتحت الشرط: إذا self. count! = 0 و self. count & لوت؛ self. one_month. وهذا يعني أنه في فترة التداول.
تحديث أزواج.
هذه الخطوة ستحدث أسعار الأسهم في كل زوج. كما أنه سيحدث الإشارة التي يطلق عليها اسم "الاخير"، وبعد ذلك مباشرة ستتلقى الأزواج إشارات جديدة.
فتح أزواج التداول.
هذا هو الجزء الأكثر تعقيدا. لكل زوج في self. selected_pair، ونحن نتلقى الأسعار الحالية للأسهم، ومن ثم استخدام نموذج التكامل المشترك لحساب المتبقية، والتي تم تعيينها إلى الزوج كعقار يسمى 'خطأ'. self. trading. pairs هي قائمة لتخزين أزواج التداول. وبمجرد فتح التداول بين الزوجين، سيتم إضافة هذا الزوج إلى القائمة، وسيتم إزالته عند إغلاق التداول. الخاصية 'اتصال' هو إشارة. إذا كان الصليب المتبقي على الانحراف المعياري العتبة الإيجابية (وضعنا هنا)، فإن إشارة تصبح +1. في حين أنه إذا عبرت الانحراف عتبة السلبية (، فإن إشارة تصبح -1 بالنسبة لأولئك أزواج مع إشارة +1، إذا كان الخطأ عبر عتبة إيجابية، وهناك إشارة لفتح التجارة. نحن مخزون طويل B ومخزون قصير A. بالنسبة لأولئك أزواج مع -1 إشارة، إذا تجاوز الخطأ عبر عتبة سلبية، ونحن طويلة الأسهم ألف ومخزون قصير B.
عندما نفتح تجارة، نحن بحاجة لتسجيل النموذج الحالي، المتوسط الحالي والانحراف المعياري للمتبقي. وهذا ضروري لأنه إذا دخلنا فترة تداول جديدة ولم يتم إغلاق الصفقة بعد، فسيتم تغيير نموذج التكامل المشترك ومتوسط الانحراف المعياري للأزواج. نحن بحاجة إلى استخدام العتبات الأصلية لإغلاق الصفقات. في حين إضافة أزواج في self. trading_pairs، ونحن بحاجة أيضا إلى تعيين إشارة 'اتصال' إلى 0 لمزيد من الاستخدام.
إغلاق أزواج التداول.
يتحكم هذا الجزء في خروج أزواج التداول. وهو يعمل على غرار الجزء الافتتاحي. ويستخدم النموذج الأصلي المسجل وعتبات لتحديد ما إذا كان ينبغي لنا إغلاق الموقف. إذا كان المتبقي يصل عتبة الإغلاق لدينا، ونحن تصفية المخزون A والمخزون B لإغلاق. إذا استمر المتبقي في الانحراف عن المتوسط ويذهب بعيدا جدا، ونحن أيضا إغلاق الموقف لوقف الخسارة. عندما نقوم بإغلاق التداول أزواج، ونحن أيضا إزالة أزواج من self. trading_pairs.
استخدمنا بيانات دقة 10 دقائق ل باكتست الاستراتيجية من يناير 2018 إلى ديسمبر 2018. للتدليل على نتائج التدريب عينة، اخترنا عشوائيا فترة التدريب التي من 2018-09-07 إلى 2018-11-30.
نتيجة التدريب.
ويبين الجدول التالي أفضل 10 أزواج مختارة في فترة التدريب المذكورة أعلاه. يمكننا أن نرى أن أزواج مع أعلى معامل الارتباط ليس بالضرورة لديه أفضل قيمة اختبار أدف. حققنا رتبة من قبل أدف قيمة الاختبار لأنه أكثر قوة.
يرسم الجزء العلوي من الرسم البياني التالي أسعار الأسهم للزوج إنغ مقابل تب. الجزء السفلي المؤامرات من قبل كم مرة الانحراف المعياري المتبقية ينحرف عن متوسطه. هناك 5 فرص التداول إذا وضعنا عتبة الافتتاح لتكون 2.32.
الرسم البياني التالي هو مؤامرة الكثافة للخطأ المتبقي. من الشكل يمكننا أن نرى الخطأ هو تقريبا توزيع العادية.
وتعتبر الاستراتيجية استراتيجية محايدة في السوق لأنها استراتيجية طويلة / قصيرة تراهن على تقارب الأسعار. خارج بيتاستد بيتا هو -0.112، الذي هو ضمن توقعاتنا.
من الناحية النظرية، وارتفاع القرار نستخدمها، وارتفاع معدل الفوز هو لأن من ناحية القرار العالي من شأنه أن يزيد من عدد داتابوانت في فترة التدريب لدينا، الأمر الذي من شأنه أن يجعل من الصعب على الماضي اختبار على مرحلتين. من ناحية أخرى فإن البيانات أعلى دقة تسمح لنا التقاط أرباح طفيفة أكثر دقة. ومع ذلك، هناك تبادل بين الأداء و باكتستينغ الوقت. فإن دقة أعلى يؤدي باكتستينغ الوقت لزيادة جذرية.
عدد الأسهم في خطوة التهيئة سوف يؤثر أيضا على أدائنا. نظريا، والمزيد من الأسهم لدينا، ونحن أفضل أزواج نحن من المرجح أن اختيار. ولكن الكثير من الأسهم ستكون أيضا مضيعة للوقت.
والجدير بالذكر أن المعلمات المثلى تختلف عن كل قطاع. ذلك يعتمد على ملامح أنماط الأسعار في صناعة محددة. رسم أسعار أزواج وبقية لمراقبة خيار جيد لضبط العتبات.
إزدواجية استراتيجية التداول بين الزوجين
تداول الأزواج هو شكل من أشكال انعكاس المتوسط الذي له ميزة واضحة من التحوط دائما ضد تحركات السوق. وهي عموما استراتيجية ألفا عالية عندما تدعمها بعض الإحصاءات الدقيقة. هذا المفكرة يعمل من خلال المفاهيم التالية.
ويهدف دفتر الملاحظات ليكون مقدمة للمفهوم، وبينما هذا الكمبيوتر المحمول يتميز زوج واحد فقط، وربما كنت تريد خوارزمية الخاص بك للنظر في العديد من أزواج في آن واحد.
تم إنشاء جهاز الكمبيوتر المحمول أصلا لعرض في قسم كس التطبيقية هارفارد ومنذ ذلك الحين استخدمت في ستانفورد، كورنيل، والعديد من الأماكن الأخرى. إذا كنت ترغب في معرفة المزيد عن كيفية استخدام كوانتوبيان كأداة تعليمية في أعلى الجامعات، يرجى الاتصال بي على [إمايل & # 160؛ المحمية]
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
وهنا خوارزمية بسيطة جدا على أساس النهج المقدم في دفتر الملاحظات.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
وهنا خوارزمية أكثر تطورا كتبه إرني تشان. وتحسب هذه الخوارزمية نسبة التحوط بدلا من مجرد الاحتفاظ بكميات متساوية من كل ضمان.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
أشياء مفيدة جدا.
ما الذي يجعلها تفقد بشكل منهجي لما يقرب من 3 أشهر؟ هل فشل التكامل المشترك في تلك الفترة؟
في الأساس نعم، اتضح أن لا تكون مشتركة في هذا الإطار الزمني، ولكن عاد إلى كونونيغراتد على المدى الطويل.
أعتقد أن السحب الذي تشير إليه هو حالة قوية لماذا تريد فعلا العديد من أزواج التداول في نفس الوقت. أزواج يمكن كوينيغراتد على نطاقات زمنية مختلفة، وأي واحد معين لن يكون دائما في حالة تجارية (انتشار كبير، انتشار صغير). من خلال زيادة حجم العينة الخاصة بك، يمكنك جعله أكثر احتمالا أن زوج واحد على الأقل سوف تكون دولة قابلة للتداول بقوة في وقت معين، وسلس من المطبات الغريبة التي تراها هنا.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
شكرا على هذا. مفيدة جدا في الواقع. لاحظت كنت تستخدم المعزز ديكي فولر اختبار لاختبار التكامل المشترك. هل لديك تطبيق مماثل باستخدام اختبار يوهانسن؟ أنا غير قادر على العثور على اختبار جوهانسن مع الثعبان.
ويبدو أنه في حين كانت هناك بعض المحاولات لإضافة اختبار جوهانسن إلى مكتبة ستاتسموديلز، حاليا لا يوجد أي تطبيق مدمج. هنا، على سبيل المثال، هو تنفيذ طرف ثالث. أنا لست متأكدا متى ستحصل على إضافة إلى المكتبات بايثون، هل هناك طريقة يمكنك العمل حولها عدم وجود ذلك؟
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
شكر. لقد رأيت هذا الرابط. معقدة جدا لتنفيذ وكتابة كل شيء في إيد. في الواقع، حاول ساتيا B هنا هتبس: // كوانتوبيان / المشاركات / ترادينغ-باسكيتس-كو-إنتغراتد-ويث-سبي.
جمال اختبار يوهانسن هو أنه يولد إيجنفكتورس، والتي أعتقد أنه يمكنك استخدام طرق أخرى لحساب على الرغم من أنني لا أستذكر في هذه اللحظة، لمدة تصل إلى 12 الأصول والعديد من الأشياء الأخرى، والتي يمكن استخدامها لإنشاء سلة. كنت أبحث في واحدة من استراتيجية أرنب مؤشر إرني ومحاولة تكرار ذلك على منصة Q لتقييم الأداء بعد الرسوم / الخ الخ. لاحظت الرسوم يبدو أن مضغ الكثير من الأداء. ذي أبغ & أمب؛ زوج فسلر أعلاه لديه نسبة شارب 0.75 ولكن انتهت مع شارب نسبة -0.29. وهناك الكثير من الأزواج تبدو مربحة تحولت إلى أن تكون غير مربحة بعد انتشار عرض / طلب، والرسوم، والعمولة وما إلى ذلك وبالتالي، وأنا أنظر في 3 أو أكثر من الأسهم تداول الزوج، وفهرس أرب. سوف جوهانسن اختبار جعل هذا أسهل لتنفيذ.
سأواصل المحاولة.
دفتر الملاحظات هو مقدمة إحصائية ممتازة لتداول أزواج، أوصي أي شخص مهتم في هذا الموضوع ننظر أيضا في بعض البحوث المالية. تشريح أزواج التداول هو بداية جيدة، والمراجع هي مفيدة كذلك. هناك ورقتان عامتان أخريان حول إستراتيجيات المراجحة المخاطر هي خصائص المخاطر و العائد في مخاطر المخاطر و المراجحة المحدودة في أسواق الأسهم. هناك بعض الدروس المكلفة التي تعلمها الناس حول إدارة هذه الأنواع من الاستراتيجيات، ومن المفيد معرفة الدروس مقدما. يتم تحذير مسبق.
أنتوني، جيد أن أراك هنا! لقد كنت تبحث عن تنفيذ جيد للاختبار يوهانسن لفترة من الوقت ولكن لا يمكن العثور على واحد. // ^ جيثب / ستاتسموديلز / ستاتسموديلز / القضايا / 448 و هتبس: // جيثب / جوزيف-يكت / ستاتسموديلز / كوميت / bf79e8ecb12d946f1113213692db6dac5df2b6e9 انها حقا سيئة للغاية كما بالتأكيد في التمويل الكمي هذا هو على نطاق واسع تستخدم على نطاق واسع.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Aaron. شكرا لرؤساء متابعة. نقدر أنها القادمة من الخاص بك. سأقضي بعض الوقت مع تلك الأوراق.
Thomas. شكرا على الرابط. كما قلت، فمن القديم قليلا. أفضل من لا شيء أفترض.
هنا هو تنفيذ الثعبان لنماذج تصحيح الخطأ ناقلات. يمكنك أيضا استخدامه للعثور على الأوزان كوينغراشيون. econ. schreiberlin. de/software/vecmclass. py.
هنا هو نسخة من إرني تشان خوارزمية تعديلها لتداول أزواج متعددة. هذا هو وسيلة جيدة للحصول على العديد من تيارات العائد غير مترابطة والحد من بيتا من الاستراتيجية الشاملة.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Delany، هل هناك طرق متاحة للكشف عن أزواج باستخدام اختبارات إحصائية؟ أم أن تلك عادة ما تكون مكلفة حسابيا؟
ونحن نعمل على طريقة لجعل استنساخ أجهزة الكمبيوتر المحمولة - قادرة على بيئة البحث الخاصة. في هذه الأثناء المهتمين في اللعب مع دفتر الملاحظات من آخر الأصلي يمكن تحميل البرنامج هنا. بعد تحميل تحميله في حساب البحث الخاص بك. إذا لم يكن لديك حساب بحث حتى الآن، أدخل خوارزمية في المسابقة لتلقي الوصول.
good التاجر، فإن الطريقة المقدمة في دفتر الملاحظات شاشة قائمة معينة من الأوراق المالية للتكامل المشترك، والحالة الأساسية اللازمة لتداول أزواج. المشكلة ليست بقدر تعقيد الحسابية كما هو فقدان القوة الإحصائية. لمزيد من المقارنات التي تقوم بها، وأقل وزنك يجب أن تضع على قيم P كبيرة. هذه الظاهرة موصوفة هنا. ولكي تكون صادقا إحصائيا، يجب تطبيق تصحيح بونفيروني على قيم p التي تم الحصول عليها من نص برمجي ثنائي التكافؤ. والسبب في ذلك هو أنه كلما زادت قيم p التي تولدها، كلما زادت احتمالية مواجهة قيم P ذات قيمة زائفة ولا تعكس سلوك التكامل المشترك الفعلي في الأوراق المالية الأساسية. وبما أن عدد المقارنات التي أجريت عند البحث عن التكامل المشترك بين الزوجين في الأوراق المالية ن ينمو بمعدل O (n ^ 2)، فإن النظر إلى 20 ورقة مالية سيجعل معظم الاختبارات الإحصائية غير مجدية. وهناك نهج أفضل هو التوصل إلى مجموعة صغيرة من الأوراق المالية المرشحة باستخدام تحليل الروابط الاقتصادية الأساسية. ويمكن بعد ذلك إجراء عدد قليل من الاختبارات الإحصائية لتحديد أي، إذا وجدت، أزواج هي كوينغراتد. اسمحوا لي أن أعرف إذا كان هذا هو ما تقصده.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
إنني أختلف إلى حد ما عن المشكلة التي تنطوي على مقارنات كثيرة جدا. تصحيح بونفيروني مناسب عندما كنت تبحث عن الحقيقة. على سبيل المثال، إذا كان لديك استبيان يحتوي على 1000 عنصر وكنت تعطيه للأشخاص الذين يعانون من السرطان أو بدونه، سوف تجد في المتوسط 50 البنود التي ترتبط مع السرطان عند مستوى 5٪ من الأهمية الإحصائية، حتى لو كان لا شيء على يرتبط الاستبيان بالسرطان. إذا كنت تفكر في مجموعات من عنصرين أو أكثر، يمكنك إنشاء العديد من الارتباطات تريد.
ولكن عند تصميم استراتيجيات التداول الآلي، والعلاقات المصادفة لا تؤذي لك كثيرا. أنها تضيف الضوضاء العشوائية وتكاليف التداول إلى النتائج الخاصة بك. وبما أن نتائج قليلة هي 100٪ لا معنى لها، فإن معظم العلاقات لديها على الأقل بعض درجة من المثابرة، فإنه ليس من الأهمية بمكان لتصفية الاستراتيجية الخاصة بك وصولا الى تلك التي تم التحقق منها بدقة. الأرباح المسألة، وليس الحقيقة. بونفيروني ومقاييس مماثلة يدفعك إلى العلاقات الأكثر موثوقية إحصائيا، والتي ليست عموما الأكثر فائدة اقتصاديا.
إذا كان "تحليل الروابط الاقتصادية الأساسية & كوت؛ يعني البدء مع أزواج الطبيعية مثل اثنين من الشركات المماثلة في نفس الصناعة، لم أجد أن من المفيد. في الأساس الناس يلاحظ الاشياء واضحة. إذا كنت تعنى التفكير في علاقات أقل وضوحا، وخاصة الأشياء التي غير مرئية في البيانات المعتادة الناس استخدام، ثم أوافق. من الناحية المثالية تريد قصة اقتصادية صالحة للعلاقة الزوج، وهو ما يفسر كل من سبب وجوده ولماذا لا يتم محجوب بعيدا. ليس فقط هذا الحراسة ضد استخراج البيانات، ولكن هذا يعني أنه يمكنك قياس ما إذا كان التأثير لا يزال يعمل (دون ذلك، فإن الطريقة الوحيدة التي تعرف استراتيجية لا تعمل عندما تفقد المال).
عمل جيد. أنا لا أقرأ من خلال دفتر الملاحظات الخاص بك سطر بخط، ولكن أستطيع أن أقول أنه سيكون إضافة كبيرة إلى مكتبة مثال كوانتوبيان. ومتابعة مع الطحالب المشتركة - خطوة جيدة.
قد يكون لديك نظرة على دفتر نشرت، هتبس: // كوانتوبيان / بوستس / أناليسيس-أوف-مينوت-بار-ترادينغ-فولوميس-أوف-ذي-إتفس-سبي-أند-ش. لتصور كيف يذهب زوج معين من والخروج من التكامل المشترك، هل يمكن أن تجعل مؤامرة مماثلة. تطبيق الاختبار الإحصائي 390 مرة في كل يوم تداول على مدى سنوات عديدة تتطلب بعض الصبر، على الرغم من.
Aaron هل أنا صحيح في قراءة حجتك عموما كما يلي؟
- في العالم الحقيقي بونفيروني هو تقييدية جدا وعدد من أزواج مربحة تخسر عن طريق تصحيح يفوق اليقين الإحصائي تكسب أنت.
وأعتقد أننا نتفق على النقطة النهائية التي تقوم بها. وأعتقد أن العديد من الناس تحليل الارتباط الاقتصادي تفعل التبسيط وتجاهل العلاقات التي يحتمل أن تكون مثيرة للاهتمام التي هي أكثر عرضة لاحتواء ألفا غير محجوب.
Grant شكرا لك. نحن نخطط بالفعل لتوسيع مكتبة المثال إلى منهج تمويل كمي كامل تدرس مع أجهزة الكمبيوتر المحمولة وخوارزميات رفيق. سنحظى بسلسلة من المحاضرات الصيفية أثناء تطوير المزيد من الموضوعات، لذا كن على اطلاع بذلك. دفتر الملاحظات الخاص بك هو بارد جدا وأنا لا أتساءل كيف مستقرة درجات التكامل المشترك حتى لأزواج كوينيغراتد بقوة. للأسف، لا أعتقد أنه سيكون لدي الوقت للنظر في ذلك في المستقبل القريب ما هو مع إنتاج أجهزة الكمبيوتر المحمولة المناهج الدراسية الأخرى. نحن نبحث عن المساهمين الضيوف، ولكن. إذا كان لديك أي أجهزة الكمبيوتر المحمولة كنت ترغب في أن تكون واردة في المناهج الدراسية لدينا مع الائتمان الكامل للمؤلف (ق)، وإرسالها في طريقي وأنا سوف نرى ما إذا كانت تناسب المحتوى الحالي لدينا.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
في العالم الحقيقي بونفيروني هو تقييدية جدا وعدد من أزواج مربحة تخسر عن طريق تصحيح يفوق اليقين الإحصائي تكسب أنت.
ليس على وجه التحديد. نعم، بونفيروني مقيد جدا بمعنى أنه يعطيك عدد قليل جدا من الأزواج، ولكن بونفيروني يوجهك أيضا إلى أزواج خاطئة.
في مثال استبيان يحتوي على 1000 مادة تعطى لمرضى السرطان والمرضى غير المصابين بالسرطان، فمن المرجح أن معظم العناصر ليس لها تأثير على السرطان، أو على الأقل هذه التأثيرات الضعيفة والمعقدة التي لا يستحق استخدامها للحصول على المشورة الطبية. حتى إذا كنت تريد أهمية 5٪، يمكنك اختبار كل عنصر عند مستوى 0.005٪ (الذي تريد 3.9 الانحرافات القياسية، وليس فقط 1.6). أنت لا تفكر في ذلك، لأن أي تأثير حقيقي قوي بما فيه الكفاية إلى المسألة من المرجح أن تظهر مع أهمية قوية. إذا لم تفعل بونفيروني، فستنتهي ب 50 توصية حتى في حالة عدم وجود أي من العناصر المهمة، والكثير من النصائح غير المفيدة.
بالمناسبة، بونفيروني هو تصحيح المحافظ جدا، وهناك أكثر تطورا التي تسمح المزيد من العناصر.
ولكن إذا كان لديك 1000 أزواج لاختبار، فمن المرجح أن العديد منهم لديهم درجة من القدرة على التنبؤ كوينغغرال. حتى إذا لم يكن هناك إمكانية للتنبؤ، بما في ذلك الزوج الاضافي يضيف القليل من الضجيج لاستراتيجيتك، والتي ليست فظيعة. كما أنك لا تعتقد أن أيا منها لديه القدرة على التنبؤ قوية جدا أن أي شخص قد لاحظت ذلك و أرباجيد بعيدا. لذا فمن المعقول النظر في جميع الأزواج ذات الأهمية 5٪ أو أقل، وتصفية بها باستخدام المعايير الاقتصادية أو غيرها من المعايير التي لا علاقة لها البيانات. اختيار فقط أقوى العلاقات الإحصائية ليست حكيمة.
يمكنك تعيين هذا في إطار بايزي إذا كنت ترغب الاتساق والدقة. أو يمكنك فقط استخدام قواعد مخصصة من الإبهام.
فقط ل إيل-بير-ليتيراتد الذين يرغبون في التعلم. يجب أن يكون هناك قصة وراء الزوج؟ هل ينبغي أن يكون هناك تفسير منطقي؟ لعبت حولها مع أزواج وجدت على سبيل المثال أن مورغانستانلي وإكسبيديا العمل. لكن لماذا؟ أو لا يريد أحد معرفة السبب.
يجب أن يكون هناك قصة وراء الزوج؟
هذا هو في الواقع سؤال دلالي بدلا من سؤال مالي. إذا كنت اعتمدت نهجا إحصائيا نقيا دون النظر إلى الأزواج الفعلية، سوف ينتهي بك الأمر بمئات أو آلاف من الأزواج، بما في ذلك بعض تلك المتداخلة. ثم نحن لا نسميها استراتيجية التداول أزواج ولكن استراتيجية الأسهم قصيرة الأجل.
فكرة تداول الأزواج هي يمكنك الحصول على نظرة إضافية من خلال النظر في أسباب محددة للاعتماد بين الأسهم؛ وهذا البصيرة يمكن أن يؤدي إلى تحديد المواقع أكثر دقة، وأيضا تجنب خسائر كبيرة عندما يكسر العلاقة.
العلاقات الواضحة، مثل اثنين من الأسهم الكبيرة في نفس الصناعة، لا تميل إلى أن تكون مفيدة. وهذا أمر مربك أحيانا، لأن بعض الأزواج المبكرة الشهيرة تتعامل مع مثل هذه الأزواج، وأنها لا تزال تستخدم لأمثلة في معظم النصوص. ولكن الكثير من الناس يراقبون هذه الفوارق بشكل وثيق جدا للحصول على نسب شارب العالية التي تحتاجها لاستراتيجيات غير متكافئة مثل تداول الأزواج. ترك تلك الحادة الهامشية إلى الناس قصيرة الأجل الأسهم الذين لديهم الكثير من المناصب.
أيضا، عندما نتحدث عن سبب العلاقة بين الأزواج، نحن نتحدث عن كل من الإيجابية - لماذا يصعب تخيل عالم تتنوع فيه قيم هذه الشركات عن أبعادها التاريخية - و سلبية - لماذا تستجيب هذه الأسهم لمختلف الأخبار الاقتصادية؟ لذلك بالنسبة لشركتين شبه متطابقة السؤال الأول هو سهل، ولكن الثاني هو الصعب. ل اثنين من الشركات التي لا علاقة لها على ما يبدو مثل مس و إكسبي انها العكس. قد تقول شيئا مثل، & كوت؛ في اقتصاد جيد مورجان ستانلي يحصل على الكثير من الأعمال والناس يسافرون كثيرا، & كوت؛ ولكن هذا صحيح أساسا من أي شركتين تقريبا.
وكان السبب الكلاسيكي للأزواج شركتين استجابتا للعوامل الاقتصادية الأساسية نفسها، مثل أسعار النفط أو أسعار الفائدة أو قوة الدولار الأمريكي، ولكن في نقاط مختلفة من سلسلة التوريد، يقول أسعار النفط الخام مقابل عائدات محطة الغاز. وصلة واحدة ليست جيدة بما فيه الكفاية، تقريبا جميع الشركات تستجيب لهذه العوامل. ولكن يمكنك العثور على أزواج التي تتطابق مع عوامل أضيق، ونقول نشاط التكسير في شمال شرق الولايات المتحدة أو هطول الأمطار في وسط كاليفورنيا، أو أن تطابق الاتجاه على عدد من العوامل العريضة. Or you can find two companies that are actually in similar businesses today, but that for historical reasons are listed in different sectors. Another common situation is two companies involved at different points of the lifecycle of durable assets; homebuilders and furniture stores with similar geography for example.
Anyway, when you have a reason, you have things to monitor to fine-tune your position; and to alert you if a big dislocation is a great trading opportunity or a sign than the historical relation has broken. If you don't have a reason, you'd better have a lot of diversification, meaning you can't afford the specific analysis work for each pair.
Wouldn't you admit though that if a pair has a story then that story is known and therefore unprofitable by the likes of slow to trade retail traders? And if one could mine the data and discover, through the data, stories that were unexpected that one could at least compete in the pairs trading space? I see your point on maintaining a large pool of pairs if the stories that connect the participants are weak or unexplored, but still, if we underlings wish to participate why wouldn't we use such a technique? Or do you maintain that retail traders can capture and profit from anomalous pair spreads of well known couples?
Wouldn't you admit though that if a pair has a story then that story is known and therefore unprofitable by the likes of slow to trade retail traders?
No, I wouldn't agree with that view. Pairs trading tends to be low capacity, especially in lower-cap stocks, and takes a lot of work. It's not attractive for asset managers because the investment amounts and risk characteristics are erratic. It's mostly pursued by individual full-time professional traders, who might follow a dozen pairs in addition to a few dozen other strategies, and semi-pro traders who are willing to take what the market gives them and stay in cash when none of their strategies are attractive. There are more good pairs than there are competent traders chasing them.
In principle, you could find good pairs using a clever automated filter, or by reading and thinking. My general feeling is the first is harder, and if you're going to do it, you'll want to do it to identify large numbers of pretty good pairs rather than two or three great pairs. In that case, I'd say just switch to long-short equity and forget pairs. The good thing about reading and thinking is most good quants are lazy, and would rather let the computer do the work. So you're competing with non-quants, some of whom are pretty good at reading and thinking, but are at a huge disadvantage to someone with a computer who knows a little math.
I don't want to come across as dogmatic, anyone who does what other people tell them is not likely to find great success in any sort of trading. If you think you can design an algorithm to identify good pairs, there's no harm in trying. It just doesn't strike me as the most promising approach.
. takes a lot of work.
بلى. The easy pairs trade money was made long ago. Lucrative stories in lower-cap stocks though exposes a pair to the aberrations of smaller company volatility no? "Whoops, that solar stock just lost its major contract. Or, wow, that driller just got a windfall state contract." And then the story gets rewritten, or thee or four pages get torn out. One might catch such preludes to story changes if one only watches a dozen or so stories. But here, where we're looking to avoid story watching -- going fully automated, we would get nailed by such narrative breakdowns in just a few pair relationships.
When you say switch to long/short equities you would seem to advocate abandoning the statistical search for obscure (perhaps whimsical) stories in lieu of broader mean reversion -- is this true? But, if one has the tools, why not create dozens and dozens of strange storied pair trades. Sure the stories may not actually exist. But then again, maybe you discover 10 or 20 that are unique. And through a process of eliminating the poorly paired partners, you end up with a manageable set that are capable of dancing with the stars? This site is nothing if not a massive experiment in data mining no?
Again, I'm not trying to law down laws here, but the two straightforward approaches are (a) try to find a few pairs you can understand or (b) forget about pairs and just try to build a large portfolio of longs and shorts without worrying about pairing up stocks or doing unautomated research. In other words (a) niche clever research or (b) massive data mining.
Trying to split the difference by finding dozens of pairs but not doing the tailored research necessary to understand each one seems suboptimal.
try to find a few pairs you can understand.
If I'm reading things correctly, by "understand" you mean that there should be some underlying intuitive story behind the relationship, I suppose so that there is less risk that the relationship will suddenly disappear? Are you talking about a kind of narrative, "The reason we think this is happening, but can't really explain with a model, is. ومثل. or an explanatory quantitative model that provides the story behind the relationship? Say I find a pairs trade based on the idea that when consumers buy lots of eggs, bacon sales drop off, and vice versa. I could make up a story that people can only eat so much for breakfast, and leave it at that. I have a warm, fuzzy feeling, and if I'm a professional trader, hopefully my management will feel warm and fuzzy, too. But is the risk really any different without the story? Unless I actually find a relevant study on breakfast eating, or conduct one myself, then I could just be deluded. And if the underlying cause can't be coded into a set of rules, then it is not really automated quantitative trading, right? As a Quantopian user who doesn't do this sort of thing for a living, I need to get an algo in the Quantopian hedge fund, let it run, and collect a check. No time for doing lots of offline analyses.
There are more good pairs than there are competent traders chasing them.
sounds like the land of milk and honey for us inhabitants of Quantopia. This would say that the Quantopian team should think about churning out candidate pairs for their 35,000+ users to examine like a bunch of ants, trying to come up with stories for a subset of them ("I'll take XYZ & PDQ, do some research, and see if I can find a 'story' to support the relationship.").
I'm just trying to sort out if any of this can be reduced to practice for Joe Schmo Quantopian user, or if it is a hopeless endeavor. Is there a path for Quantopian to get hundreds of lucrative, scalable pairs trading algos for their $10B hedge fund (keep in mind that by my estimation, they need several thousand distinct algos in the fund)? Or is this all a bunch of blah, blah, blah?
I've tried the automated searching of pairs/baskets, using the public knowledge techniques, and though I haven't gone through them all with my tick-level back-tester, the few that I did examine personally were largely worthless; the supposed spread mean-reversion that my grid search turned up was just spurious or due to bid-ask bounce.
However, I do know for a fact that people run decently profitable automated pairs trading portfolios. I take that to mean that it is possible, but the way that I approached it was naive. Perhaps the legwork method is the way to go, coming up with theses about drivers and then looking for portfolios that would express the theses, with the actual hedge ratio construction done "rigorously" using Kalman filters or whatever.
My take is that chatting about pairs trading is wonderful, but there should be a focus on reducing it to practice, with some sort of approachable workflow, so that a Quantopian user can sit down in his pajamas with a cup of coffee on a rainy day and actually come up with a halfway decent algo that would have a shot at getting into the crowd-sourced Q fund. For example, we have:
. try to find a few pairs you can understand.
Perhaps the legwork method is the way to go, coming up with theses about drivers.
حسنا. So what's the workflow for your typical Q user? Keep in mind, this needs to be scalable. it won't do Q any good if only users with an advanced degree and 20 years of industry experience can be successful. If the answer is, "Well, there is no workflow. you just need to know" then pairs trading won't be approachable on Q. We have Aaron's "reading and thinking" recommendation above, but read what?
Also, I'd seen somewhere that there are techniques for synthesizing trading pairs, from baskets of securities. Does this work? Or does one effectively end up with the long-short equity portfolio referred to by Aaron Brown above?
The kind of warm-and-fuzzy story you mention is worthless for investing, although as you say it can reassure investors and regulators. What you're looking for is covariates to refine your strategy and, most important, warn you when it's not going to work. The quant trap is that when your relation breaks it simply looks more attractive to your model, and you spiral to doom.
The eggs-and-bacon story is actually the reverse of what you want. That says there is a fixed total consumption, so the total amount consumed of both products is fixed, meaning they are negatively cointegrated. If they were positively correlated, say because investors bid up or down all breakfast foods as a group, you would do anti-pairs trading. You're looking for things that have to be in some kind of long-term balance, but move is opposite directions in the short-term. A warm-and-fuzzy story might be residential construction and furniture sales, in the short run if people are saving for down payments they're not buying furniture, and newly house poor families are making due with old furniture and underfurnishing. But in the long run, houses will get furnished. This would never be a pairs trading story because it's relating entire sectors. To exploit this, you'd build a model tracing the full life cycle, and likely involving other factors like interest rates and family demographics and migration patterns, and trade large numbers of stocks.
To keep this practical, here is a Pairs Trading for Dummies recipe (I mean that respectfully, I'm a big fan for For Dummies books).
Run some kind of statistical screen to identify promising pairs trading targets. Don't look for extreme statistical significance, just some moderate level to screen out the noise like 5% or 1%. It can help to limit one member of each pair to companies or regions you know something about.
Clearly this is for someone who has quant skills, but also general research skills and business judgment.
Run some kind of statistical screen to identify promising pairs trading targets. Don't look for extreme statistical significance, just some moderate level to screen out the noise like 5% or 1%. It can help to limit one member of each pair to companies or regions you know something about.
it sounds like it could be productive for Quantopian to open-source some efficient tools for the screening (and maybe up their game in terms of computing resources). Let's say I'm an expert on company XYZ and maybe I could narrow down my field of candidate securities for comparison to NASDAQ-listed stocks, of which there are about 3,000. So, it is an O(N) computing problem, not O(N^2) as Delaney mentions above for the general screening problem. But, I'd like to compute the statistics on a rolling basis, every trading minute over 2 years. I'd have:
(3000 comparisons/minute)(390 minutes/day)(252 days/year)(2 years) = 589,680,000 comparisons.
Is something like this at all feasible on the Quantopian research platform? If not, how would I scale it back to something that would actually run in a reasonable amount of time (a few days at most) but still provide useful results?
I'm playing around with the algorithm by Ernie Chan that you posted.
Surprisingly, it fails entirely when I swap the pair, see the attached backtest (I've only changed the order).
Also, how to treat the negative hedge (beta from OLS). With the current implementation we go long (short) on both positions when the sign of the hedge is the same as the sign of the z-score, which you don't expect from pair trading. What economic reason can lead to such cointegrations?
Not sure exactly why it's failing when you swap the order. Seems like the math may not be robust to an 'upside-down' زوج. The hedge ratio comes from the formal definition of cointegration, which is that for some b and u_t = y_t - b * x_t, u_t is stationary (the mean stays the same). Therefore we try to estimate the b parameter in each trade so that we can correctly produce a stationary drift between the two securities. It can be the case that the two are negatively cointegrated, whether there's a strong economic reason for this I'm not sure. You might try putting in place restrictions to not trade when you have double long or double short positions, or employing a better estimation method for b (more data points for example).
All of the issues you bring up are very sophisticated improvements, and making these improvements to the algorithm could result in something very good. I don't have cut and dried solutions for you, as you are now dancing around the edge of what is known about algorithmic trading. A lot of it comes down to rigorously testing different signal processing methods to see which yield the best out of sample performance. Also, like you said it's important to let the economic reasoning drive the creation of your model.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Thank you for your quick reply.
This is actually a very valuable response, as I was afraid I might have missed something obvious.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Here is a temp website which has similarity of movement information, which is about the same idea as pairs. StockA is the stock you are comparing to, row is how this pair ranks to all pairs, (its row count). It only contains information for the top 5000 or so pairs.
The data is pulled from the period of Aug 2018 to Feb 2018 and is an average of each day.
(Change IYR to symbol wanted)
The idea behind the algorithm is not actually for pairs trading, but is for similarity of how a pair moves. I will leave this test site up for a few weeks.
شكرا ديلاني. It's a great starting step for pair trading technique.
I am working on the missing piece of this strategy which is how to use Quantopian Research environment to find statistical cointegration stock/ETF pairs from entire universe or from the same sectors. After I construct good pairs, then I can use the Notebook you provided for further analysis and backtest.
Does anyone have any suggestion for me?
I have a question for those trading pairs.
How do you deal with the large processing requirements?
I coded some tests for co-integration and results per combination take roughly 1 second.
I can get this down with parallel processing and by storing data locally but a universe of 2000 stocks will still have 4000000 potential combinations.
Perhaps pointing out the obvious, but .
A pre-screening tool, or pre-screening done for you for a fee .
When I was researching this sort of thing a couple of years ago, the baskets of 3 and 4 of only a few hundred ETFs took months on my MacBook. And they were all mostly garbage, though I never actually went through them all. I probably should.
If I remember correctly, that was 1.6T combinations, or something like that.
The formula is R to the Sterling S, divided by S!
so, for 4000 stocks, it would be.
(4000 x3999)/2! or, about 8 million pairs made from the 4000 typical stocks. for 3 stocks considered together, there would be 4000 x 3999 x 3998 /3!
You can prune the possible tree pretty easily though. I believe most stocks behave as if they really were ETFs (at the market neutral way of looking at it only) and can be represented by a group of other stocks, that move with their same fundamentals. You only have to know what sectors they move with, and then check for pairs against this.
So, for example, with HLF, it moves with consumer, several currencies, emerging markets, and a few others. It is hard to separate out exactly as emerging markets also move with currency, so which is which becomes the question.
For two typical tech stocks that appear to be very similar, it may well be the case that their main difference is which currencies they move with. So, for most of the time, they may appear co-integrated, but then, when there is a difference in currencies that affects one a lot, and not so much the other, they then move apart.
I was working on an algorithm to determine the underlying components, (so to speak) that collectively make each stock behave with the same logic as if it was a multi-sector ETF. (where the underlying stocks are a mystery to be solved) I have most of it done, and I believe I have enough done to prove it does work this way, but I lost my real time quote stream a few months ago, and so stopped working on it.
since my algorithm would need to consider up to 15 underlying components to solve this problem, it would be 4000 x 3999 x3998 . 3985/15! So, I have to trim it. The link I posted a few messages above shows some of the results of this work, where I first determine the possible stocks to consider, for each symbol.
It is my belief that the market is essentially swamped out with pairs trading, and this is why it works so mathematically perfect for each stock to behave as if it is an ETF.
There is certainly a high computational cost to looking at all possible pairs. However, there is a tradeoff to this approach, as you put yourself at a high risk for multiple comparisons bias. Please see earlier in this thread for a fairly complete discussion of this issue. Regardless of which method you use to select pairs, you'll want to do some additional validation using the notebook and then use the algorithms in this thread to try backtesting a strategy.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Indeed, Aaron Brown's advice is gold.
What is "multiple comparisons bias"? I'm lazy and don't feel like sifting through this rather extensive discussion thread.
I find it hard to believe that pairs trading would work as a scalable hedge fund strategy (be able to pour $10's of millions into a single pair). Is there any evidence? In other words, why is Quantopian promoting this?
This is one of the best threads on the site.
It scales; you can trade hundreds of pairs.
Multiple comparisons is a core problem in all of statistics, right up there with overfitting. The general idea is that if you run 100 statistical tests on random data, you should still expect to get 5 below a 5% cutoff and 1 below a 1% cutoff based on random chance. This is true when testing various iterations of a model, or many pairs. Because the number of pairs is O(n^2) you should expect to get a lot of spurious p-values when looking for pairs. A naive strategy of just looping through pairs won't work, you need to be a bit more sophisticated.
And yes you trade many pairs with low exposure to each. That said, I think that long-short equity strategies may be a better first bet to get into the fund at this point, just based on robustness and capacity.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
There is more electricity used in the state of New Jersey doing calculations on the market than there is electricity used in that state for manufacturing. Pairs strategy likely accounts for at least 50% of this usage as even HFT likely often uses some version of deviation from the mean. It is my opinion that the market is so saturated with pairs trading that given the price of any ten tickers that had no big news, one could deduce the price of the rest of the market and be within 0.7% of the actual price, 90% of the time for the top traded 4000 stocks. (and it could probably be done with less than ten tickers. ) So, for a 30 dollar stock, the margin of error would be about a quarter. This is how precisely, compared to each other, I think they move. Until there is news.
It sounds like a corollary to the reciprocal of the law of large numbers; given enough samples you will always find something to fit.
I would reintroduce the concept I proposed in an article in S&C last spring ; the directed acyclic graph or DAG. Using thousands of correlated or cointegrated pairs I built groups from them. Those groups were essentially social graphs of securities. You can search here for DAG, but briefly, you can use the concept of pair trading, that is, fade and favor the divergences, but with a correlated group. And such a group is assembled, dynamically, from a list of pairs that are "friends of friends". It's a pairs strategy, essentially, but with lower risk and less work managing hundreds of separate strategies.
That said, I think that long-short equity strategies may be a better first bet to get into the fund at this point, just based on robustness and capacity.
Have people been coming up with good ones? If so, what proportion are using the new data sets? If not, why not, do you think that is?
I haven't been focusing on them at all, mostly because there's a problem of opportunity cost; if I spend all my time looking for equity long-short algos, not only is there a chance I don't find anything, but if I do, there's still a chance that Quantopian doesn't select it, and since I cannot trade them myself, that time is wasted (unless I pitch it to other funds I suppose). If I look for algos that I personally can trade, and I find some, then I trade them.
I realize there's an unfortunate schism wherein I am using your platform but not contributing to your business model, so if you have any ideas how I can help without wasting my time writing algos that only work high account levels, please let me know. Pairs trading/statistical arbitrage might be one solution, but I've found them very difficult to implement; anything that looks promising in Quantopian fails the backtest when using dividend-adjusted bid-ask tick data, so I might shift my focus back to building my own lower latency infrastructure for a while.
I would reintroduce the concept I proposed in an article in S&C last spring ; the directed acyclic graph or DAG. Using thousands of correlated or cointegrated pairs I built groups from them.
Cool. Yeah, pretty similar. The DAG though was used specifically to find the networked graph. Those trees might embody the same thing, not sure. But I'd guess the idea is approximate.
Why would anyone want to pairs trade when trading a Minimum Spanning Tree or correlated network graph of stocks is so much safer and easier? I've built dozens of pairs strategies and the directionality of the pair always broke the model. And all pairs I ever tested all went directional at some point -- beyond the account's ability to Martingale down.
Have people been coming up with good ones? If so, what proportion are using the new data sets? If not, why not, do you think that is?
I can't release any specific data on this. I can say that there's a lag between when we update product features/try to educate people about algorithm writing techniques (larger universe size, shorting), and when new strategies start appearing. We'd love more large universe strategies right now and I'm trying to figure out ways to make it easier for folks to develop large universe long-short strategies using pipeline.
I haven't been focusing on them at all, mostly because there's a problem of opportunity cost; if I spend all my time looking for equity long-short algos, not only is there a chance I don't find anything, but if I do, there's still a chance that Quantopian doesn't select it, and since I cannot trade them myself, that time is wasted (unless I pitch it to other funds I suppose). If I look for algos that I personally can trade, and I find some, then I trade them.
I realize there's an unfortunate schism wherein I am using your platform but not contributing to your business model, so if you have any ideas how I can help without wasting my time writing algos that only work high account levels, please let me know. Pairs trading/statistical arbitrage might be one solution, but I've found them very difficult to implement; anything that looks promising in Quantopian fails the backtest when using dividend-adjusted bid-ask tick data, so I might shift my focus back to building my own lower latency infrastructure for a while.
Totally reasonable. We don't release our product with the expectation that everybody will use it to develop strategies for the fund, we also want to support your use case of personal trading. We also understand there's a conflict between pushing people to write high capacity market neutral long-short strategies, when those will never work on their own money. What I'm trying to figure out is ways to make the workflow of producing and evaluating factors easier, because once you have a factor-based ranking system, it's pretty easy to slot that into an existing long-short algorithm using pipeline. I'm working on sharing a pipeline algorithm with the community and attaching it to the lectures page in an effort to get more cloning and tweaking going on.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
I share Simon's sentiment. I've continued to participate in the contests, but the idea of spending tens (hundreds?) of hours trying to come up with an uber algo that will compete with the big dogs sounds like a lot of work, with a very uncertain pay-off (it's not even clear that you are still working on the hedge fund. any substantive news?). The pipeline thingy has a bit of a learning curve, so I haven't taken that on yet (the fact that lots of obscure modules need to be imported is a red flag). That said, if there were good working examples that could be tweaked, I might give it a go.
What I'm trying to figure out is ways to make the workflow of producing and evaluating factors easier, because once you have a factor-based ranking system, it's pretty easy to slot that into an existing long-short algorithm using pipeline.
Why don't you get all of the Q eggheads together for 1 week and see if you can come up with a long-short algo that would be Q hedge-fundable, and publish it (and better yet, actually fund it). Not only would this provide an existence proof, but you should also gain some insight into the workflow and the person-hours to accomplish the task.
Here is a pipeline algorithm that I just published as the goto example of a long-short equity strategy. I'm sure it will go through many improvements as the public eye turns to it, but it should at least be a start. It's tricky because we do want to publish algorithms that are 95% of the way done, so that users can take the last 5% and improve the strategies in many different uncorrelated ways. With long-short equity most of the work is in choosing good factors and factor ranking techniques. Unfortunately those are the type of signals that will disappear when shared publicly, but the actual machinery to trade within the algorithm should stay pretty consistent. If you're maybe looking to learn pipeline a bit, I would recommend going through Lectures 17 and 18, then looking at the algorithm.
I can say for certain we are working on the hedge fund. Even if you have strategies that aren't consistently winning the contest, we may be interested in an algorithm that can consistently do ok. Ultimately, my job as the one overseeing the lectures is to keep trying to make it easier so people don't have to spend as much time working on algorithms that may never pay off for them, and so we get more algorithms that do pay off in the long run.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
I start to implement pair trading backtesting in research environment instead of IDE. The main reason is to automatic run multiple pairs performance analysis before I jump into IDE for full backtest. Another reason for this work is to do further analysis for returns from many pairs.
I am wondering where I can find the example of backtesting in research environment to start with. Any comment is very appreciated.
In your research environment there should be a 'Tutorials and Documentation' مجلد. Inside the folder should be a notebook with the title 'Tutorial (Advanced) - Backtesting with Zipline'. Make a copy of that and let me know if that's enough to get you started.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
May 28 algo falls below benchmark if extended to date and -43% PvR with default slippage and commissions, tanking thru 2018.
Hope it can be rescued b/c it shows good potential.
The example strategies cheat and run on the same timeframe over which we did research and found the securities to be cointegrated. In a real strategy you'd want to find pairs that were cointegrated into the future and not just historically cointegrated. The template should stay largely the same, so it's an issue of swapping in new securities that you have statistical evidence will stay cointegrated.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Could you post a tutorial on calibrating an Ornstein Uhlenbeck process for mean reverting series residuals?
We've added a lecture on this to our queue. No idea when we might currently get to it, but it's on there.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Ages ago I posted, perhaps as anonymole, that a "pair" needn't be made of only two securities. In fact, the whole "we only allow low beta strats" mantra is pretty much an argument that all strategies should be a variation of a pairs strat. That is, over all, a market neutral position is best.
Taking this further however, and applying a more formal model to the pairs strategy (that the security set have a "story" attached to it) I wonder if the two halves of the pair would do better as independent baskets of securities. That if one approached a pairs strategy with the mind to match up two behaviorally opposed baskets of securities that instead of trying to search all pair combinations looking for all the super-great-marvelous attributes a pair should have, that instead, one determine the two sides of the pair coin and fill each side with the most appropriately identified securities -- for each side.
A simplistic model might be described thusly:
Equities which cycle up in the spring/summer and down in the fall/winter would be bundled together and set against equities which cycle oppositely (down in the summer, up in the winter).
No doubt there are more interesting or undiscovered cycles that exist. My point is that rather than identify securities that yin and yang, one discover technical, or macro, or fundamental classifications which zig when the other zags. Then find securities which fit each of those baskets of behavior.
This is a very interesting idea and definitely something that professional quants do. At the core we just want two assets on either side of a pair, and a portfolio of assets will do just as well as a single equity. There are probably pros and cons of each method, but the idea of using a basket of things rather than a single thing can greatly reduce your position concentration risk and lead to a better algorithm. I'd say it's worth research. You'd still likely want a few different pairs of baskets as each would smooth out the return curve of the other and produce a lower volatility algorithm.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
I have to run an errand, so I only have five minutes, but hopefully I can be clear in that time.
To demonstrate the chops of an AI system, I created an algorithm that can represent the small changes in stocks price, as the sum of a set of ETFs. For example, with MSFT one might have XLK, XLY, FXE, FXI, and some others.
I can show that the typical price movements during a day can be represented in this way. However, when there is specific news, then it is no longer true, if the news is strong.
What I believe this shows is that instead of things "returning to the mean" they are in fact not moving arbitrarily and so, if they return to the mean, it is because one of the underlying components in fact moved. (Of all the underlying components, usually only one or two have news, and the rest are balancing each other out, once the price has adjusted.)
How might one design a trading platform for this as even if you do know it is the sum of other waveforms that are causing one waveform, one still doesn't know what causes them to move until after the fact.
(the reduction in influence is 1/1.6 when looking at the components, so after a couple of feedback loops, the influence is not measurable. Thanks, and sorry for the hurried note,
Have you read Algorithmic Trading written by Ernie Chan? For sure you read it, I have a question: in fact I am not good in programming and working with Matlab, I am really interested in Currency cross rate part of the book and I want to implement the positions in live trading but I don't know how to do that in fact I can't understand what the numbers as positions mean! If somebody can guide me I'm really appreciated.
Not entirely sure I'm understanding your thesis but it seems that you've created an expression that models the returns of a specific stock from it's sector exposures. This is actually a common risk modeling tactic, check out my notebook here. To build a trading strategy off of this I would take your hypothesis about changing news and use that to alter the coefficients of your model. A cool place to start would be to check out the lectures on factor modeling and then maybe look at some news/sentiment data sets to see if you can find any anomalies.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
That is close. It models the returns to within a few cents usually, at any moment in time, depending on the stock and its volatility as a sum of its sectors. (except when it has specific news.) What I envision behind it is a large set of funds using NLP to invest by sector based on news. Because they are so large, then they tend to swamp out the market during normal times.
I can also show that stock prices changes are directly proportional to the sum of the underlying sectors information, for most time periods. For example, the price changes for three months show this and also for three weeks, which is a bit chaos like, as it would seem they wouldnt be so perfectly in tune. Anyway, with this I can sort stocks by their overall market efficiency (the more efficient you are, the more you sync with the relationship stated above).
I also believe that there are huge funds that are interested in doing nothing more than treading water (as one possible explanation) and they move their money around the world, just trying to stay even, and so the result is that at any given time, the sum of everything stays near zero. (when one thing goes up somewhere, something else somewhere else goes down.)
These relationships also break down during periods of very high volatility such as fall 2018.
There are other things I am able to quantify, but again have no idea how to use. When information about a specific stock or sector hits the market, it is my observation that the more objective the information, the faster the market responds, and the more subjective it is, the slower the market responds.
For example, when Ackman says that HLF is a pyramid scheme, then it can sometimes be hours, and sometimes even days before that news is no longer affecting the price of the stock, but when an analyst upgrades or downgrades a stock, that is more objective and the entire price adjustment is over in fifteen minutes. (If you subtract out market movements then an analysts announcement looks like a log curve, with most of the action in the beginning and a bit of a ringing at the last.)
Again, this all happens too fast to be of use, and it is after the fact that I can say, "That was subjective."
I don't think I am able to alter the coefficients as you suggest. I am using a hard coded take on a system of recursive polynomials for my modeling, so there are billions of coefficients.
Hi, I have a quick and possibly dumb question. Why did you use the ratio instead of the difference between S1 and S2 in the Quantopain pairs trading lecture? In the co-integration lecture, you use the difference instead. In other sources, they use the difference as well.
There's an updated notebook, algorithm, and video available on the lecture series page.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
And as a response to pandasaurus' question, which I unfortunately just saw, we have removed the ratio as it was a typo in the lecture.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Greetings Quantopian Community,
I was at the NYC Event on Pairs Trading, and the current example algorithm is deprecated, such that one cannot deploy it in live trading. With this fix, users can now deploy the algorithm in live trading. The fix is hosted as a pull request on github--thanks.
شكرا جزيلا. Could you please submit your PR to the following repo? It's where we store lectures and examples. Doesn't quite fit in the current form of zipline.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Thanks, Delaney. I submitted the PR to the specified branch.
شكر! Delaney. I am finishing my graduation thesis these days, Your work may help me a lot.
That's great to hear, Dzi. Hope it goes well!
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
I have question in regards to high frequency pairs trading using bid/ask price. One thing that I noticed is during an entry signal if I'm supposed to go long in one and short the other, the Long position that I enter would be using the ask price and this ask price normally is higher than the bid price, so when my exit signals to exit, my bid price that I close my position at will often cause me to loose than make money. What are some of the ways to prevent this from happening or what are some strategies that goes hand in hand with trading high frequently with pairs strategy. Further, how are limit orders used with the bid/ask price.
If you need to make the spread in order for the strategy to be profitable, then you are squarely competing with high-frequency market makers, and it's a whole different ball game. You are unlikely to win. If you have control over the specific order types you send, you could attempt to use mid-point pegs or something, but as soon as you admit any sort of limit orders where execution is not immediate, you now need to be concerned about being exposed unhedged, which is something that you'll need to backtest. (not easy either). What some people do is try and rest or peg an order for the less liquid leg, and attempt to save some of the cost of the wider spread (though again, these days, you'll probably just get adversely selected for no net gain), and then as soon as that fills, you aggressively execute the hedge leg across the narrower spread.
How does one use both bid and ask z score in high frequency trading? For simplicity, I can understand using z score, but when it comes to using both bid and ask price z score, I have trouble picturing how it is used.
Simon's right, mid-frequency strategies generally should be fairly robust to bid-ask spreads. If they're not the edge is probably too small to be consistently profitable. For high frequency trading you do have to consider the bid and ask in many different ways, as your trading will be very sensitive to movements in both. How exactly you use the data would depend on your model.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
You can imagine that the spread is a synthetic asset. For instance, X = 1L -1S so a single unit of X is long one unit of L and short one unit of S. If you need to buy one unit of X immediately, you will buy at the ask of L and sell at the bid of S. If you need to sell one unit of X, you will sell at the bid of L and buy at the ask of S.
You can then easily calculate the bid and ask for X, you have just two "z-scores" to deal with. Then, if you like, you can delay buying until the X_ask_zscore < threshold, and delay selling until the X_bid_zscore > exit_threshold.
أتمنى أن يساعدك هذا.
I had a chance to see this notebook before and I would recommend it to everyone here. Lots of amazing info can be found inside.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Hey Simon. thanks for that last post. I've been thinking through the logic behind that, but I do have some questions. Hope you don't mind explaining or expanding on it a little. 1) If I understood you correctly you mean X being the spread between a pair? in other words one unit of X immediately to be traded immediately, I would think that you will buy at the ask of X rather than L to be immediate wouldn't you? One problem that I would encounter by buying one unit of X at the ask price of L would be that the ask price of L may not be the lowest ask price of X and therefore may cause me to still queue to purchase the unit of X or not even fill. Can you say a little more in regards to this?
2) Further, there is one concept that I'm having a hard time to understand. Let's say that my Z score > entry threshold of +2. I would short L by one unit by selling one unit of L at the bid price of L and go long one unit of Y at the ask price of Y. Assuming hedge ratio is 1 and all. When my Z score < exit threshold of say 0.2. I would then exit my short and long position of the pair. The issue that I would encounter assuming no fees and all is that I would loose money during these trades. I'm having a hard time understanding why that would be if my Z score returned to or close to mean. Is the reason behind this due to the fact that the volatility of the bid/ask price may not be high enough to allow the difference in the entry and exit bid/ask spread price at the start and end of the transaction to pull far enough to earn money?
Please take a look at the last part of the page for this link that shows the true correlations, which are arrived at by saying "from the point of view of a pairs trader, how correlated are these tickers."
If you know how to subtract out the part of the market that floats all boats, to be left only with the information pertaining to neutral, there are extreme correlations. XLK is the ticker used in the example, but there are a thousand I could have used. When you know how to subtract out all but the neutral information, the market becomes completely different in how it appears.
Scroll to the very bottom of the article and look at the two tables with correlation information. These numbers are this way because there is so much interest in pairs trading that it tends to swamp things out. It is even more pronounced in Europe.
1) I think you are getting a bit confused; X is not a real thing, it's a synthetic asset formed by the basket of L and S. X has a price to buy and a price to sell which you calculate from the bids and asks of the components. If you cross the spread, generally, you trade immediately in small enough size. You only have uncertainty about fills if you try to earn the spread. That gets much more difficult.
2) Maybe. If your trades are not making money, I mean, that's a big problem. I can't answer why they are not making money. It could be transaction costs like the bid/ask spreads, you should analyze the volatility of your baskets as a function of the bid/ask spreads you have to pay. If you have to cross four 5-cent spreads to try and capture a spread mean-reversion of 2 cents, well yeah you are going to have problems. A bigger problem I found was that mean reversion happens one of two ways; either the asset reverts to the mean, or the mean converges with the asset (assuming you are constantly recomputing the mean, which seems to be common practice). In both cases your z-score goes back to zero, but only in the first case do you make any money.
@daniel I read your article, the correlations at the end, are those of prices, or returns ?
Thanks for clearing that up for me. The idea of using synthetic assets is relatively new to me. I went and researched it a little and noticed that it is often used to capture streams of cash flow. I'm currently trying to perform residual pairs trading with Chinese Future Contracts. As I research it for the use of Futures, I don’t really find much articles or explanations. Is it applicable to Futures?
At the same time, I'm relatively new at this and trying to go through the lectures and stuff to learn. When you say I should analyze the volatility of my baskets as a function of the bid/ask spreads. Do you know where I can find a lecture that discuss this further? Sorry to ask some fundamental questions. One thing I notice in my data is that the bid/ask spread is really small and by small the it is just a spread of one tick of the futures contract; while the Volume for that tick is also small just around 80 or less contracts for either bid or ask.
The correlations are about prices, but just a subset.
(I have edited this down, as compared to what you probably have in email. Please don't copy anything from the email onto the board.)
James - maybe? You need pairs/baskets with enough variance to profitably trade the mean reversion. There tends to be a spectrum; structurally correlated assets (like ETF vs their component baskets) are perfect to trade, so perfect, that everyone does it and therefore the deviations are probably less than the spread. Then there's really shitty pairs which you find doing brute force analysis of the stock market. These have lots of variance, but they probably don't converge, and/or the relationship is totally spurious. Read closely Aaron Brown's posts on this thread. You want something in the middle.
Danial - I am not sure how useful correlations of prices of any kind are ? They are bound to be super high.
By itself I don't believe there is any one thing that is useful for a neutral strategy.
My approach is to look at the market as being represented by several hundred core waveform, and similar to the idea of Fourier Transform, you can use these fundamental waveform to create the 4000 heaviest played stocks. So, basically everything I believe about the market is based on the idea of correlations, as this is what I used as one of the first steps to find those wave forms. (which are not easy to find.)
Consider if you have Tickers AAA and BBB, and they are two similar stocks.
AAA might have as its composite the waves A, B, C, D, E, F, G, H, I, J, and BBB may have D, E, F, G, H, I, J, K, L.
During the times that there is little to no activity in the components A, B, C, K, L then the two tickers would be nearly perfectly correlated. But if suddenly component A had news (for example), then the perfect correlations would no longer hold, since stock BBB does not have an A component waveform..
If you apply the above to the idea of mean reversion, then you can see what I believe the mean reversion strategy is actually about.
In my opinion the best way to play a neutral strategy would be to devise a portfolio that is about the underlying fundamental wave components..
And in the interest of completeness, I will mention that in the above examples, waves A, B, C, etc are also made of composite waves, (and those composites . ) as the market is self referencing. The several hundred are at the bottom of the self referencing, and are something that exists in theory, that I believe I could "easily" find, but have not spent the time and energy to do so as of this date.
I also believe that if I had data for all the major markets of the world and was able to deduce the underlying component waves for those instruments that are heavily played by the collectively speaking, multi-trillion dollar funds, that the sum of these waves would (except for inflation) most of these times sum to be zero.
Some researchers generate the log price series of two equities with the daily close. Then the spread series is estimated using regression analysis based on log price series data. For equities X and Y, they run linear regression over the log price series and get the coefficient β.
Any reason they use log price series instead?
عذرا، هناك خطأ ما. حاول مرة أخرى أو اتصل بنا عن طريق إرسال الملاحظات.
لقد أرسلت بنجاح تذكرة دعم.
سيكون فريق الدعم لدينا على اتصال قريبا.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان.
وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان.
وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Pair trading strategy cointegration
A related paper has been added to:
#12 - Pairs Trading with Stocks.
Title: Cointegration and Relative Value Arbitrage.
Notable quotations from the academic research paper:
"In the pairs trading literature, the most common type of relative value arbitrage, substitutes for individual stocks are identified by minimizing the Euclidean distance in the daily price space over a historical period.5 Matching stocks over the price space instead of the return space is consistent with short-term relative value trading strategies, while removing the need to specify factors. Although the matching method is simple to perform, by design, it guarantees the existence of a counterpart for every stock, which is counterintuitive. More importantly, stocks that exhibit little variation in the price pattern over the formation period (possibly due to lack of news flow) would end up being labelled close substitutes, although they are not fundamentally related.
In this paper, we propose a simple method of identifying close economic substitutes using cointegration. When a pair of stock prices is cointegrated, one series co-moves with a scaled version of the other. We show that close economic substitutes can be represented by a system of cointegrated prices where the scaling factor, or the cointegration coefficient, is close to one.
We find that from 1962 to 2018, NonParity, a positive-valued metric of closeness that measures the distance of the cointegration coefficient from unity, strongly predicts both the probability that relative mispricing will subsequently be corrected as well as the profitability of the arbitrage trade. A one standard deviation increase in the variable reduces the convergence probability by seven percentage points and pairs trade payoffs by 2.78 percentage points. Further, predictability through NonParity also presents profitable trading opportunities. At the portfolio level, the pairs trading of cointegrated stocks is generally unprofitable. However, when trading is confined to pairs of stocks with NonParity close to zero, the strategy is profitable after reasonable estimates of brokerage, slippage, and short selling costs. Specifically, over the sample period, the average after-cost risk-adjusted return to trading a portfolio of cointegrated pairs with NonParity less than 0.5 (0.2) is 0.43% per month, with a t-statistic of 5.29 (0.58% per month, with a t-statistic of 4.77)."
Statistics Behind Pair Trading (I): Understanding Correlation and Cointegration.
In pair trading, usually a pair of stocks is traded in a market neutral strategy, i. e. it doesn’t matter whether market is trending upwards or downwards, the two open positions for each stock hedge against each other. To be able to pair trade, the key challenges are to:
Choose a pair which will give you good statistical arbitrage opportunities over time Choose the entry/exit points.
In this post, we will discuss in details how statistics play a crucial role in the first challenge of deciding the pair to trade. The pair is commonly chosen from the same basket of stocks for instance, Microsoft and Google (technology domain) or ICICI & Axis (Banking) or Nifty Index and MSCI index (market indices). Among each domain, there are thousands of pairs are possible. The best ones are those which are based on mathematical or statistical tests.
علاقه مترابطه.
Though not common, a few pair trading strategies look at correlation to find a suitable pair to trade. Correlation is measurement of relationship between two variables, in this case, log returns of prices of stocks A and B. If correlation is high, say 0.8, traders may choose that pair. This high number represents a strong relationship between the two stocks. So if A goes up, the chances of B going up are also quite high. Based on this assumption a market neutral strategy is played where A is bought and B is sold; bought and sold decisions are made based on their individual patterns.
Just looking at correlation might give you spurious results. For instance, if your strategy is based on the spread between the prices of the two stocks, it is possible that the prices of the two stocks keep on increasing without ever mean reverting.
Spread = log(a) – n log(b), where ‘a’ and ‘b’ are prices of stocks A and B respectively. For each stock of A bought you have sold n stocks of B.
Now, both ‘a’ and ‘b’ increases in such as way that the value of spread decreases. This will result in a loss since stock A is increasing at a rate lower than stock B and you are short on stock B.
Cointegration.
The most common test for pair trading is the co integration test. Cointegration is a statistical property of two or more time series variables which indicates if a linear combination of the variables is stationary. Let us understand this statement above. The two time series variables in this case are the log of prices of stocks A and B. Linear combination of these variables can be a linear equation defining the spread:
Spread = log(a) – n log(b), where ‘a’ and ‘b’ are prices of stocks A and B respectively. For each stock of A bought you have sold n stocks of B.
If A and B are cointegrated then it implies that this equation above is stationary. A stationary process has very valuable features which are required to model pair trading strategies. For instance, in this case if the equation above is stationary, that suggests that the mean and variance of this equation remains constant over time. So if we start with ‘n’, which is called the hedge ratio, so that spread = 0, the property of stationary implies that expected value of spread will remain as 0. Any deviation from this expected value is a case for statistical abnormality, hence a case for trading!
How to choose a pair of stocks for trading?
For any pair of two stocks, define the spread as below:
Spread = log(a) – n log(b), where ‘a’ and ‘b’ are prices of stocks A and B respectively.
Assumption: n , the hedge ratio, is a constant.
Calculate ‘n’ using regression so that spread is as close to 0 as possible. Hence, we regress the stock prices to calculate the hedge ratio.
Theory: In regression, we get a term called the residuals which represents the distance of observed value from the curve fitting line or estimated value. These residuals tell us how much the actual value of ‘spread’ deviates from 0 for the calculated ‘n’. These residuals are studied so that we understand whether or not they form a trend. If they do not form a trend, that means the spread moves around 0 randomly and is stationary.
Run the Dicky Fuller test on the spread (more complicated and popular version is called Augmented Dicky Fuller Test or ADF) values inserting the value of ‘n’. DF test is a hypothesis test which gives pValue as the result. If this value is less than 0.05 or 0.01, we can say with 95% or 99% confidence that the signal is stationary and we can choose this pair.
In our next blog, we will work out the statistics involved in deciding the entry and exit signals of a pair trading strategy.
تداول الأزواج هو شكل من أشكال انعكاس المتوسط الذي له ميزة واضحة من التحوط دائما ضد تحركات السوق. وهي عموما استراتيجية ألفا عالية عندما تدعمها بعض الإحصاءات الدقيقة. هذا المفكرة يعمل من خلال المفاهيم التالية.
ويهدف دفتر الملاحظات ليكون مقدمة للمفهوم، وبينما هذا الكمبيوتر المحمول يتميز زوج واحد فقط، وربما كنت تريد خوارزمية الخاص بك للنظر في العديد من أزواج في آن واحد.
تم إنشاء جهاز الكمبيوتر المحمول أصلا لعرض في قسم كس التطبيقية هارفارد ومنذ ذلك الحين استخدمت في ستانفورد، كورنيل، والعديد من الأماكن الأخرى. إذا كنت ترغب في معرفة المزيد عن كيفية استخدام كوانتوبيان كأداة تعليمية في أعلى الجامعات، يرجى الاتصال بي على [إمايل & # 160؛ المحمية]
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
وهنا خوارزمية بسيطة جدا على أساس النهج المقدم في دفتر الملاحظات.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
وهنا خوارزمية أكثر تطورا كتبه إرني تشان. وتحسب هذه الخوارزمية نسبة التحوط بدلا من مجرد الاحتفاظ بكميات متساوية من كل ضمان.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
أشياء مفيدة جدا.
ما الذي يجعلها تفقد بشكل منهجي لما يقرب من 3 أشهر؟ هل فشل التكامل المشترك في تلك الفترة؟
في الأساس نعم، اتضح أن لا تكون مشتركة في هذا الإطار الزمني، ولكن عاد إلى كونونيغراتد على المدى الطويل.
أعتقد أن السحب الذي تشير إليه هو حالة قوية لماذا تريد فعلا العديد من أزواج التداول في نفس الوقت. أزواج يمكن كوينيغراتد على نطاقات زمنية مختلفة، وأي واحد معين لن يكون دائما في حالة تجارية (انتشار كبير، انتشار صغير). من خلال زيادة حجم العينة الخاصة بك، يمكنك جعله أكثر احتمالا أن زوج واحد على الأقل سوف تكون دولة قابلة للتداول بقوة في وقت معين، وسلس من المطبات الغريبة التي تراها هنا.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
شكرا على هذا. مفيدة جدا في الواقع. لاحظت كنت تستخدم المعزز ديكي فولر اختبار لاختبار التكامل المشترك. هل لديك تطبيق مماثل باستخدام اختبار يوهانسن؟ أنا غير قادر على العثور على اختبار جوهانسن مع الثعبان.
ويبدو أنه في حين كانت هناك بعض المحاولات لإضافة اختبار جوهانسن إلى مكتبة ستاتسموديلز، حاليا لا يوجد أي تطبيق مدمج. هنا، على سبيل المثال، هو تنفيذ طرف ثالث. أنا لست متأكدا متى ستحصل على إضافة إلى المكتبات بايثون، هل هناك طريقة يمكنك العمل حولها عدم وجود ذلك؟
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
شكر. لقد رأيت هذا الرابط. معقدة جدا لتنفيذ وكتابة كل شيء في إيد. في الواقع، حاول ساتيا B هنا هتبس: // كوانتوبيان / المشاركات / ترادينغ-باسكيتس-كو-إنتغراتد-ويث-سبي.
جمال اختبار يوهانسن هو أنه يولد إيجنفكتورس، والتي أعتقد أنه يمكنك استخدام طرق أخرى لحساب على الرغم من أنني لا أستذكر في هذه اللحظة، لمدة تصل إلى 12 الأصول والعديد من الأشياء الأخرى، والتي يمكن استخدامها لإنشاء سلة. كنت أبحث في واحدة من استراتيجية أرنب مؤشر إرني ومحاولة تكرار ذلك على منصة Q لتقييم الأداء بعد الرسوم / الخ الخ. لاحظت الرسوم يبدو أن مضغ الكثير من الأداء. ذي أبغ & أمب؛ زوج فسلر أعلاه لديه نسبة شارب 0.75 ولكن انتهت مع شارب نسبة -0.29. وهناك الكثير من الأزواج تبدو مربحة تحولت إلى أن تكون غير مربحة بعد انتشار عرض / طلب، والرسوم، والعمولة وما إلى ذلك وبالتالي، وأنا أنظر في 3 أو أكثر من الأسهم تداول الزوج، وفهرس أرب. سوف جوهانسن اختبار جعل هذا أسهل لتنفيذ.
سأواصل المحاولة.
دفتر الملاحظات هو مقدمة إحصائية ممتازة لتداول أزواج، أوصي أي شخص مهتم في هذا الموضوع ننظر أيضا في بعض البحوث المالية. تشريح أزواج التداول هو بداية جيدة، والمراجع هي مفيدة كذلك. هناك ورقتان عامتان أخريان حول إستراتيجيات المراجحة المخاطر هي خصائص المخاطر و العائد في مخاطر المخاطر و المراجحة المحدودة في أسواق الأسهم. هناك بعض الدروس المكلفة التي تعلمها الناس حول إدارة هذه الأنواع من الاستراتيجيات، ومن المفيد معرفة الدروس مقدما. يتم تحذير مسبق.
أنتوني، جيد أن أراك هنا! لقد كنت تبحث عن تنفيذ جيد للاختبار يوهانسن لفترة من الوقت ولكن لا يمكن العثور على واحد. // ^ جيثب / ستاتسموديلز / ستاتسموديلز / القضايا / 448 و هتبس: // جيثب / جوزيف-يكت / ستاتسموديلز / كوميت / bf79e8ecb12d946f1113213692db6dac5df2b6e9 انها حقا سيئة للغاية كما بالتأكيد في التمويل الكمي هذا هو على نطاق واسع تستخدم على نطاق واسع.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Aaron. شكرا لرؤساء متابعة. نقدر أنها القادمة من الخاص بك. سأقضي بعض الوقت مع تلك الأوراق.
Thomas. شكرا على الرابط. كما قلت، فمن القديم قليلا. أفضل من لا شيء أفترض.
هنا هو تنفيذ الثعبان لنماذج تصحيح الخطأ ناقلات. يمكنك أيضا استخدامه للعثور على الأوزان كوينغراشيون. econ. schreiberlin. de/software/vecmclass. py.
هنا هو نسخة من إرني تشان خوارزمية تعديلها لتداول أزواج متعددة. هذا هو وسيلة جيدة للحصول على العديد من تيارات العائد غير مترابطة والحد من بيتا من الاستراتيجية الشاملة.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Delany، هل هناك طرق متاحة للكشف عن أزواج باستخدام اختبارات إحصائية؟ أم أن تلك عادة ما تكون مكلفة حسابيا؟
ونحن نعمل على طريقة لجعل استنساخ أجهزة الكمبيوتر المحمولة - قادرة على بيئة البحث الخاصة. في هذه الأثناء المهتمين في اللعب مع دفتر الملاحظات من آخر الأصلي يمكن تحميل البرنامج هنا. بعد تحميل تحميله في حساب البحث الخاص بك. إذا لم يكن لديك حساب بحث حتى الآن، أدخل خوارزمية في المسابقة لتلقي الوصول.
good التاجر، فإن الطريقة المقدمة في دفتر الملاحظات شاشة قائمة معينة من الأوراق المالية للتكامل المشترك، والحالة الأساسية اللازمة لتداول أزواج. المشكلة ليست بقدر تعقيد الحسابية كما هو فقدان القوة الإحصائية. لمزيد من المقارنات التي تقوم بها، وأقل وزنك يجب أن تضع على قيم P كبيرة. هذه الظاهرة موصوفة هنا. ولكي تكون صادقا إحصائيا، يجب تطبيق تصحيح بونفيروني على قيم p التي تم الحصول عليها من نص برمجي ثنائي التكافؤ. والسبب في ذلك هو أنه كلما زادت قيم p التي تولدها، كلما زادت احتمالية مواجهة قيم P ذات قيمة زائفة ولا تعكس سلوك التكامل المشترك الفعلي في الأوراق المالية الأساسية. وبما أن عدد المقارنات التي أجريت عند البحث عن التكامل المشترك بين الزوجين في الأوراق المالية ن ينمو بمعدل O (n ^ 2)، فإن النظر إلى 20 ورقة مالية سيجعل معظم الاختبارات الإحصائية غير مجدية. وهناك نهج أفضل هو التوصل إلى مجموعة صغيرة من الأوراق المالية المرشحة باستخدام تحليل الروابط الاقتصادية الأساسية. ويمكن بعد ذلك إجراء عدد قليل من الاختبارات الإحصائية لتحديد أي، إذا وجدت، أزواج هي كوينغراتد. اسمحوا لي أن أعرف إذا كان هذا هو ما تقصده.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
إنني أختلف إلى حد ما عن المشكلة التي تنطوي على مقارنات كثيرة جدا. تصحيح بونفيروني مناسب عندما كنت تبحث عن الحقيقة. على سبيل المثال، إذا كان لديك استبيان يحتوي على 1000 عنصر وكنت تعطيه للأشخاص الذين يعانون من السرطان أو بدونه، سوف تجد في المتوسط 50 البنود التي ترتبط مع السرطان عند مستوى 5٪ من الأهمية الإحصائية، حتى لو كان لا شيء على يرتبط الاستبيان بالسرطان. إذا كنت تفكر في مجموعات من عنصرين أو أكثر، يمكنك إنشاء العديد من الارتباطات تريد.
ولكن عند تصميم استراتيجيات التداول الآلي، والعلاقات المصادفة لا تؤذي لك كثيرا. أنها تضيف الضوضاء العشوائية وتكاليف التداول إلى النتائج الخاصة بك. وبما أن نتائج قليلة هي 100٪ لا معنى لها، فإن معظم العلاقات لديها على الأقل بعض درجة من المثابرة، فإنه ليس من الأهمية بمكان لتصفية الاستراتيجية الخاصة بك وصولا الى تلك التي تم التحقق منها بدقة. الأرباح المسألة، وليس الحقيقة. بونفيروني ومقاييس مماثلة يدفعك إلى العلاقات الأكثر موثوقية إحصائيا، والتي ليست عموما الأكثر فائدة اقتصاديا.
إذا كان "تحليل الروابط الاقتصادية الأساسية & كوت؛ يعني البدء مع أزواج الطبيعية مثل اثنين من الشركات المماثلة في نفس الصناعة، لم أجد أن من المفيد. في الأساس الناس يلاحظ الاشياء واضحة. إذا كنت تعنى التفكير في علاقات أقل وضوحا، وخاصة الأشياء التي غير مرئية في البيانات المعتادة الناس استخدام، ثم أوافق. من الناحية المثالية تريد قصة اقتصادية صالحة للعلاقة الزوج، وهو ما يفسر كل من سبب وجوده ولماذا لا يتم محجوب بعيدا. ليس فقط هذا الحراسة ضد استخراج البيانات، ولكن هذا يعني أنه يمكنك قياس ما إذا كان التأثير لا يزال يعمل (دون ذلك، فإن الطريقة الوحيدة التي تعرف استراتيجية لا تعمل عندما تفقد المال).
عمل جيد. أنا لا أقرأ من خلال دفتر الملاحظات الخاص بك سطر بخط، ولكن أستطيع أن أقول أنه سيكون إضافة كبيرة إلى مكتبة مثال كوانتوبيان. ومتابعة مع الطحالب المشتركة - خطوة جيدة.
قد يكون لديك نظرة على دفتر نشرت، هتبس: // كوانتوبيان / بوستس / أناليسيس-أوف-مينوت-بار-ترادينغ-فولوميس-أوف-ذي-إتفس-سبي-أند-ش. لتصور كيف يذهب زوج معين من والخروج من التكامل المشترك، هل يمكن أن تجعل مؤامرة مماثلة. تطبيق الاختبار الإحصائي 390 مرة في كل يوم تداول على مدى سنوات عديدة تتطلب بعض الصبر، على الرغم من.
Aaron هل أنا صحيح في قراءة حجتك عموما كما يلي؟
- في العالم الحقيقي بونفيروني هو تقييدية جدا وعدد من أزواج مربحة تخسر عن طريق تصحيح يفوق اليقين الإحصائي تكسب أنت.
وأعتقد أننا نتفق على النقطة النهائية التي تقوم بها. وأعتقد أن العديد من الناس تحليل الارتباط الاقتصادي تفعل التبسيط وتجاهل العلاقات التي يحتمل أن تكون مثيرة للاهتمام التي هي أكثر عرضة لاحتواء ألفا غير محجوب.
Grant شكرا لك. نحن نخطط بالفعل لتوسيع مكتبة المثال إلى منهج تمويل كمي كامل تدرس مع أجهزة الكمبيوتر المحمولة وخوارزميات رفيق. سنحظى بسلسلة من المحاضرات الصيفية أثناء تطوير المزيد من الموضوعات، لذا كن على اطلاع بذلك. دفتر الملاحظات الخاص بك هو بارد جدا وأنا لا أتساءل كيف مستقرة درجات التكامل المشترك حتى لأزواج كوينيغراتد بقوة. للأسف، لا أعتقد أنه سيكون لدي الوقت للنظر في ذلك في المستقبل القريب ما هو مع إنتاج أجهزة الكمبيوتر المحمولة المناهج الدراسية الأخرى. نحن نبحث عن المساهمين الضيوف، ولكن. إذا كان لديك أي أجهزة الكمبيوتر المحمولة كنت ترغب في أن تكون واردة في المناهج الدراسية لدينا مع الائتمان الكامل للمؤلف (ق)، وإرسالها في طريقي وأنا سوف نرى ما إذا كانت تناسب المحتوى الحالي لدينا.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
في العالم الحقيقي بونفيروني هو تقييدية جدا وعدد من أزواج مربحة تخسر عن طريق تصحيح يفوق اليقين الإحصائي تكسب أنت.
ليس على وجه التحديد. نعم، بونفيروني مقيد جدا بمعنى أنه يعطيك عدد قليل جدا من الأزواج، ولكن بونفيروني يوجهك أيضا إلى أزواج خاطئة.
في مثال استبيان يحتوي على 1000 مادة تعطى لمرضى السرطان والمرضى غير المصابين بالسرطان، فمن المرجح أن معظم العناصر ليس لها تأثير على السرطان، أو على الأقل هذه التأثيرات الضعيفة والمعقدة التي لا يستحق استخدامها للحصول على المشورة الطبية. حتى إذا كنت تريد أهمية 5٪، يمكنك اختبار كل عنصر عند مستوى 0.005٪ (الذي تريد 3.9 الانحرافات القياسية، وليس فقط 1.6). أنت لا تفكر في ذلك، لأن أي تأثير حقيقي قوي بما فيه الكفاية إلى المسألة من المرجح أن تظهر مع أهمية قوية. إذا لم تفعل بونفيروني، فستنتهي ب 50 توصية حتى في حالة عدم وجود أي من العناصر المهمة، والكثير من النصائح غير المفيدة.
بالمناسبة، بونفيروني هو تصحيح المحافظ جدا، وهناك أكثر تطورا التي تسمح المزيد من العناصر.
ولكن إذا كان لديك 1000 أزواج لاختبار، فمن المرجح أن العديد منهم لديهم درجة من القدرة على التنبؤ كوينغغرال. حتى إذا لم يكن هناك إمكانية للتنبؤ، بما في ذلك الزوج الاضافي يضيف القليل من الضجيج لاستراتيجيتك، والتي ليست فظيعة. كما أنك لا تعتقد أن أيا منها لديه القدرة على التنبؤ قوية جدا أن أي شخص قد لاحظت ذلك و أرباجيد بعيدا. لذا فمن المعقول النظر في جميع الأزواج ذات الأهمية 5٪ أو أقل، وتصفية بها باستخدام المعايير الاقتصادية أو غيرها من المعايير التي لا علاقة لها البيانات. اختيار فقط أقوى العلاقات الإحصائية ليست حكيمة.
يمكنك تعيين هذا في إطار بايزي إذا كنت ترغب الاتساق والدقة. أو يمكنك فقط استخدام قواعد مخصصة من الإبهام.
فقط ل إيل-بير-ليتيراتد الذين يرغبون في التعلم. يجب أن يكون هناك قصة وراء الزوج؟ هل ينبغي أن يكون هناك تفسير منطقي؟ لعبت حولها مع أزواج وجدت على سبيل المثال أن مورغانستانلي وإكسبيديا العمل. لكن لماذا؟ أو لا يريد أحد معرفة السبب.
يجب أن يكون هناك قصة وراء الزوج؟
هذا هو في الواقع سؤال دلالي بدلا من سؤال مالي. إذا كنت اعتمدت نهجا إحصائيا نقيا دون النظر إلى الأزواج الفعلية، سوف ينتهي بك الأمر بمئات أو آلاف من الأزواج، بما في ذلك بعض تلك المتداخلة. ثم نحن لا نسميها استراتيجية التداول أزواج ولكن استراتيجية الأسهم قصيرة الأجل.
فكرة تداول الأزواج هي يمكنك الحصول على نظرة إضافية من خلال النظر في أسباب محددة للاعتماد بين الأسهم؛ وهذا البصيرة يمكن أن يؤدي إلى تحديد المواقع أكثر دقة، وأيضا تجنب خسائر كبيرة عندما يكسر العلاقة.
العلاقات الواضحة، مثل اثنين من الأسهم الكبيرة في نفس الصناعة، لا تميل إلى أن تكون مفيدة. وهذا أمر مربك أحيانا، لأن بعض الأزواج المبكرة الشهيرة تتعامل مع مثل هذه الأزواج، وأنها لا تزال تستخدم لأمثلة في معظم النصوص. ولكن الكثير من الناس يراقبون هذه الفوارق بشكل وثيق جدا للحصول على نسب شارب العالية التي تحتاجها لاستراتيجيات غير متكافئة مثل تداول الأزواج. ترك تلك الحادة الهامشية إلى الناس قصيرة الأجل الأسهم الذين لديهم الكثير من المناصب.
أيضا، عندما نتحدث عن سبب العلاقة بين الأزواج، نحن نتحدث عن كل من الإيجابية - لماذا يصعب تخيل عالم تتنوع فيه قيم هذه الشركات عن أبعادها التاريخية - و سلبية - لماذا تستجيب هذه الأسهم لمختلف الأخبار الاقتصادية؟ لذلك بالنسبة لشركتين شبه متطابقة السؤال الأول هو سهل، ولكن الثاني هو الصعب. ل اثنين من الشركات التي لا علاقة لها على ما يبدو مثل مس و إكسبي انها العكس. قد تقول شيئا مثل، & كوت؛ في اقتصاد جيد مورجان ستانلي يحصل على الكثير من الأعمال والناس يسافرون كثيرا، & كوت؛ ولكن هذا صحيح أساسا من أي شركتين تقريبا.
وكان السبب الكلاسيكي للأزواج شركتين استجابتا للعوامل الاقتصادية الأساسية نفسها، مثل أسعار النفط أو أسعار الفائدة أو قوة الدولار الأمريكي، ولكن في نقاط مختلفة من سلسلة التوريد، يقول أسعار النفط الخام مقابل عائدات محطة الغاز. وصلة واحدة ليست جيدة بما فيه الكفاية، تقريبا جميع الشركات تستجيب لهذه العوامل. ولكن يمكنك العثور على أزواج التي تتطابق مع عوامل أضيق، ونقول نشاط التكسير في شمال شرق الولايات المتحدة أو هطول الأمطار في وسط كاليفورنيا، أو أن تطابق الاتجاه على عدد من العوامل العريضة. Or you can find two companies that are actually in similar businesses today, but that for historical reasons are listed in different sectors. Another common situation is two companies involved at different points of the lifecycle of durable assets; homebuilders and furniture stores with similar geography for example.
Anyway, when you have a reason, you have things to monitor to fine-tune your position; and to alert you if a big dislocation is a great trading opportunity or a sign than the historical relation has broken. If you don't have a reason, you'd better have a lot of diversification, meaning you can't afford the specific analysis work for each pair.
Wouldn't you admit though that if a pair has a story then that story is known and therefore unprofitable by the likes of slow to trade retail traders? And if one could mine the data and discover, through the data, stories that were unexpected that one could at least compete in the pairs trading space? I see your point on maintaining a large pool of pairs if the stories that connect the participants are weak or unexplored, but still, if we underlings wish to participate why wouldn't we use such a technique? Or do you maintain that retail traders can capture and profit from anomalous pair spreads of well known couples?
Wouldn't you admit though that if a pair has a story then that story is known and therefore unprofitable by the likes of slow to trade retail traders?
No, I wouldn't agree with that view. Pairs trading tends to be low capacity, especially in lower-cap stocks, and takes a lot of work. It's not attractive for asset managers because the investment amounts and risk characteristics are erratic. It's mostly pursued by individual full-time professional traders, who might follow a dozen pairs in addition to a few dozen other strategies, and semi-pro traders who are willing to take what the market gives them and stay in cash when none of their strategies are attractive. There are more good pairs than there are competent traders chasing them.
In principle, you could find good pairs using a clever automated filter, or by reading and thinking. My general feeling is the first is harder, and if you're going to do it, you'll want to do it to identify large numbers of pretty good pairs rather than two or three great pairs. In that case, I'd say just switch to long-short equity and forget pairs. The good thing about reading and thinking is most good quants are lazy, and would rather let the computer do the work. So you're competing with non-quants, some of whom are pretty good at reading and thinking, but are at a huge disadvantage to someone with a computer who knows a little math.
I don't want to come across as dogmatic, anyone who does what other people tell them is not likely to find great success in any sort of trading. If you think you can design an algorithm to identify good pairs, there's no harm in trying. It just doesn't strike me as the most promising approach.
. takes a lot of work.
بلى. The easy pairs trade money was made long ago. Lucrative stories in lower-cap stocks though exposes a pair to the aberrations of smaller company volatility no? "Whoops, that solar stock just lost its major contract. Or, wow, that driller just got a windfall state contract." And then the story gets rewritten, or thee or four pages get torn out. One might catch such preludes to story changes if one only watches a dozen or so stories. But here, where we're looking to avoid story watching -- going fully automated, we would get nailed by such narrative breakdowns in just a few pair relationships.
When you say switch to long/short equities you would seem to advocate abandoning the statistical search for obscure (perhaps whimsical) stories in lieu of broader mean reversion -- is this true? But, if one has the tools, why not create dozens and dozens of strange storied pair trades. Sure the stories may not actually exist. But then again, maybe you discover 10 or 20 that are unique. And through a process of eliminating the poorly paired partners, you end up with a manageable set that are capable of dancing with the stars? This site is nothing if not a massive experiment in data mining no?
Again, I'm not trying to law down laws here, but the two straightforward approaches are (a) try to find a few pairs you can understand or (b) forget about pairs and just try to build a large portfolio of longs and shorts without worrying about pairing up stocks or doing unautomated research. In other words (a) niche clever research or (b) massive data mining.
Trying to split the difference by finding dozens of pairs but not doing the tailored research necessary to understand each one seems suboptimal.
try to find a few pairs you can understand.
If I'm reading things correctly, by "understand" you mean that there should be some underlying intuitive story behind the relationship, I suppose so that there is less risk that the relationship will suddenly disappear? Are you talking about a kind of narrative, "The reason we think this is happening, but can't really explain with a model, is. ومثل. or an explanatory quantitative model that provides the story behind the relationship? Say I find a pairs trade based on the idea that when consumers buy lots of eggs, bacon sales drop off, and vice versa. I could make up a story that people can only eat so much for breakfast, and leave it at that. I have a warm, fuzzy feeling, and if I'm a professional trader, hopefully my management will feel warm and fuzzy, too. But is the risk really any different without the story? Unless I actually find a relevant study on breakfast eating, or conduct one myself, then I could just be deluded. And if the underlying cause can't be coded into a set of rules, then it is not really automated quantitative trading, right? As a Quantopian user who doesn't do this sort of thing for a living, I need to get an algo in the Quantopian hedge fund, let it run, and collect a check. No time for doing lots of offline analyses.
There are more good pairs than there are competent traders chasing them.
sounds like the land of milk and honey for us inhabitants of Quantopia. This would say that the Quantopian team should think about churning out candidate pairs for their 35,000+ users to examine like a bunch of ants, trying to come up with stories for a subset of them ("I'll take XYZ & PDQ, do some research, and see if I can find a 'story' to support the relationship.").
I'm just trying to sort out if any of this can be reduced to practice for Joe Schmo Quantopian user, or if it is a hopeless endeavor. Is there a path for Quantopian to get hundreds of lucrative, scalable pairs trading algos for their $10B hedge fund (keep in mind that by my estimation, they need several thousand distinct algos in the fund)? Or is this all a bunch of blah, blah, blah?
I've tried the automated searching of pairs/baskets, using the public knowledge techniques, and though I haven't gone through them all with my tick-level back-tester, the few that I did examine personally were largely worthless; the supposed spread mean-reversion that my grid search turned up was just spurious or due to bid-ask bounce.
However, I do know for a fact that people run decently profitable automated pairs trading portfolios. I take that to mean that it is possible, but the way that I approached it was naive. Perhaps the legwork method is the way to go, coming up with theses about drivers and then looking for portfolios that would express the theses, with the actual hedge ratio construction done "rigorously" using Kalman filters or whatever.
My take is that chatting about pairs trading is wonderful, but there should be a focus on reducing it to practice, with some sort of approachable workflow, so that a Quantopian user can sit down in his pajamas with a cup of coffee on a rainy day and actually come up with a halfway decent algo that would have a shot at getting into the crowd-sourced Q fund. For example, we have:
. try to find a few pairs you can understand.
Perhaps the legwork method is the way to go, coming up with theses about drivers.
حسنا. So what's the workflow for your typical Q user? Keep in mind, this needs to be scalable. it won't do Q any good if only users with an advanced degree and 20 years of industry experience can be successful. If the answer is, "Well, there is no workflow. you just need to know" then pairs trading won't be approachable on Q. We have Aaron's "reading and thinking" recommendation above, but read what?
Also, I'd seen somewhere that there are techniques for synthesizing trading pairs, from baskets of securities. Does this work? Or does one effectively end up with the long-short equity portfolio referred to by Aaron Brown above?
The kind of warm-and-fuzzy story you mention is worthless for investing, although as you say it can reassure investors and regulators. What you're looking for is covariates to refine your strategy and, most important, warn you when it's not going to work. The quant trap is that when your relation breaks it simply looks more attractive to your model, and you spiral to doom.
The eggs-and-bacon story is actually the reverse of what you want. That says there is a fixed total consumption, so the total amount consumed of both products is fixed, meaning they are negatively cointegrated. If they were positively correlated, say because investors bid up or down all breakfast foods as a group, you would do anti-pairs trading. You're looking for things that have to be in some kind of long-term balance, but move is opposite directions in the short-term. A warm-and-fuzzy story might be residential construction and furniture sales, in the short run if people are saving for down payments they're not buying furniture, and newly house poor families are making due with old furniture and underfurnishing. But in the long run, houses will get furnished. This would never be a pairs trading story because it's relating entire sectors. To exploit this, you'd build a model tracing the full life cycle, and likely involving other factors like interest rates and family demographics and migration patterns, and trade large numbers of stocks.
To keep this practical, here is a Pairs Trading for Dummies recipe (I mean that respectfully, I'm a big fan for For Dummies books).
Run some kind of statistical screen to identify promising pairs trading targets. Don't look for extreme statistical significance, just some moderate level to screen out the noise like 5% or 1%. It can help to limit one member of each pair to companies or regions you know something about.
Clearly this is for someone who has quant skills, but also general research skills and business judgment.
Run some kind of statistical screen to identify promising pairs trading targets. Don't look for extreme statistical significance, just some moderate level to screen out the noise like 5% or 1%. It can help to limit one member of each pair to companies or regions you know something about.
it sounds like it could be productive for Quantopian to open-source some efficient tools for the screening (and maybe up their game in terms of computing resources). Let's say I'm an expert on company XYZ and maybe I could narrow down my field of candidate securities for comparison to NASDAQ-listed stocks, of which there are about 3,000. So, it is an O(N) computing problem, not O(N^2) as Delaney mentions above for the general screening problem. But, I'd like to compute the statistics on a rolling basis, every trading minute over 2 years. I'd have:
(3000 comparisons/minute)(390 minutes/day)(252 days/year)(2 years) = 589,680,000 comparisons.
Is something like this at all feasible on the Quantopian research platform? If not, how would I scale it back to something that would actually run in a reasonable amount of time (a few days at most) but still provide useful results?
I'm playing around with the algorithm by Ernie Chan that you posted.
Surprisingly, it fails entirely when I swap the pair, see the attached backtest (I've only changed the order).
Also, how to treat the negative hedge (beta from OLS). With the current implementation we go long (short) on both positions when the sign of the hedge is the same as the sign of the z-score, which you don't expect from pair trading. What economic reason can lead to such cointegrations?
Not sure exactly why it's failing when you swap the order. Seems like the math may not be robust to an 'upside-down' زوج. The hedge ratio comes from the formal definition of cointegration, which is that for some b and u_t = y_t - b * x_t, u_t is stationary (the mean stays the same). Therefore we try to estimate the b parameter in each trade so that we can correctly produce a stationary drift between the two securities. It can be the case that the two are negatively cointegrated, whether there's a strong economic reason for this I'm not sure. You might try putting in place restrictions to not trade when you have double long or double short positions, or employing a better estimation method for b (more data points for example).
All of the issues you bring up are very sophisticated improvements, and making these improvements to the algorithm could result in something very good. I don't have cut and dried solutions for you, as you are now dancing around the edge of what is known about algorithmic trading. A lot of it comes down to rigorously testing different signal processing methods to see which yield the best out of sample performance. Also, like you said it's important to let the economic reasoning drive the creation of your model.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Thank you for your quick reply.
This is actually a very valuable response, as I was afraid I might have missed something obvious.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Here is a temp website which has similarity of movement information, which is about the same idea as pairs. StockA is the stock you are comparing to, row is how this pair ranks to all pairs, (its row count). It only contains information for the top 5000 or so pairs.
The data is pulled from the period of Aug 2018 to Feb 2018 and is an average of each day.
(Change IYR to symbol wanted)
The idea behind the algorithm is not actually for pairs trading, but is for similarity of how a pair moves. I will leave this test site up for a few weeks.
شكرا ديلاني. It's a great starting step for pair trading technique.
I am working on the missing piece of this strategy which is how to use Quantopian Research environment to find statistical cointegration stock/ETF pairs from entire universe or from the same sectors. After I construct good pairs, then I can use the Notebook you provided for further analysis and backtest.
Does anyone have any suggestion for me?
I have a question for those trading pairs.
How do you deal with the large processing requirements?
I coded some tests for co-integration and results per combination take roughly 1 second.
I can get this down with parallel processing and by storing data locally but a universe of 2000 stocks will still have 4000000 potential combinations.
Perhaps pointing out the obvious, but .
A pre-screening tool, or pre-screening done for you for a fee .
When I was researching this sort of thing a couple of years ago, the baskets of 3 and 4 of only a few hundred ETFs took months on my MacBook. And they were all mostly garbage, though I never actually went through them all. I probably should.
If I remember correctly, that was 1.6T combinations, or something like that.
The formula is R to the Sterling S, divided by S!
so, for 4000 stocks, it would be.
(4000 x3999)/2! or, about 8 million pairs made from the 4000 typical stocks. for 3 stocks considered together, there would be 4000 x 3999 x 3998 /3!
You can prune the possible tree pretty easily though. I believe most stocks behave as if they really were ETFs (at the market neutral way of looking at it only) and can be represented by a group of other stocks, that move with their same fundamentals. You only have to know what sectors they move with, and then check for pairs against this.
So, for example, with HLF, it moves with consumer, several currencies, emerging markets, and a few others. It is hard to separate out exactly as emerging markets also move with currency, so which is which becomes the question.
For two typical tech stocks that appear to be very similar, it may well be the case that their main difference is which currencies they move with. So, for most of the time, they may appear co-integrated, but then, when there is a difference in currencies that affects one a lot, and not so much the other, they then move apart.
I was working on an algorithm to determine the underlying components, (so to speak) that collectively make each stock behave with the same logic as if it was a multi-sector ETF. (where the underlying stocks are a mystery to be solved) I have most of it done, and I believe I have enough done to prove it does work this way, but I lost my real time quote stream a few months ago, and so stopped working on it.
since my algorithm would need to consider up to 15 underlying components to solve this problem, it would be 4000 x 3999 x3998 . 3985/15! So, I have to trim it. The link I posted a few messages above shows some of the results of this work, where I first determine the possible stocks to consider, for each symbol.
It is my belief that the market is essentially swamped out with pairs trading, and this is why it works so mathematically perfect for each stock to behave as if it is an ETF.
There is certainly a high computational cost to looking at all possible pairs. However, there is a tradeoff to this approach, as you put yourself at a high risk for multiple comparisons bias. Please see earlier in this thread for a fairly complete discussion of this issue. Regardless of which method you use to select pairs, you'll want to do some additional validation using the notebook and then use the algorithms in this thread to try backtesting a strategy.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Indeed, Aaron Brown's advice is gold.
What is "multiple comparisons bias"? I'm lazy and don't feel like sifting through this rather extensive discussion thread.
I find it hard to believe that pairs trading would work as a scalable hedge fund strategy (be able to pour $10's of millions into a single pair). Is there any evidence? In other words, why is Quantopian promoting this?
This is one of the best threads on the site.
It scales; you can trade hundreds of pairs.
Multiple comparisons is a core problem in all of statistics, right up there with overfitting. The general idea is that if you run 100 statistical tests on random data, you should still expect to get 5 below a 5% cutoff and 1 below a 1% cutoff based on random chance. This is true when testing various iterations of a model, or many pairs. Because the number of pairs is O(n^2) you should expect to get a lot of spurious p-values when looking for pairs. A naive strategy of just looping through pairs won't work, you need to be a bit more sophisticated.
And yes you trade many pairs with low exposure to each. That said, I think that long-short equity strategies may be a better first bet to get into the fund at this point, just based on robustness and capacity.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
There is more electricity used in the state of New Jersey doing calculations on the market than there is electricity used in that state for manufacturing. Pairs strategy likely accounts for at least 50% of this usage as even HFT likely often uses some version of deviation from the mean. It is my opinion that the market is so saturated with pairs trading that given the price of any ten tickers that had no big news, one could deduce the price of the rest of the market and be within 0.7% of the actual price, 90% of the time for the top traded 4000 stocks. (and it could probably be done with less than ten tickers. ) So, for a 30 dollar stock, the margin of error would be about a quarter. This is how precisely, compared to each other, I think they move. Until there is news.
It sounds like a corollary to the reciprocal of the law of large numbers; given enough samples you will always find something to fit.
I would reintroduce the concept I proposed in an article in S&C last spring ; the directed acyclic graph or DAG. Using thousands of correlated or cointegrated pairs I built groups from them. Those groups were essentially social graphs of securities. You can search here for DAG, but briefly, you can use the concept of pair trading, that is, fade and favor the divergences, but with a correlated group. And such a group is assembled, dynamically, from a list of pairs that are "friends of friends". It's a pairs strategy, essentially, but with lower risk and less work managing hundreds of separate strategies.
That said, I think that long-short equity strategies may be a better first bet to get into the fund at this point, just based on robustness and capacity.
Have people been coming up with good ones? If so, what proportion are using the new data sets? If not, why not, do you think that is?
I haven't been focusing on them at all, mostly because there's a problem of opportunity cost; if I spend all my time looking for equity long-short algos, not only is there a chance I don't find anything, but if I do, there's still a chance that Quantopian doesn't select it, and since I cannot trade them myself, that time is wasted (unless I pitch it to other funds I suppose). If I look for algos that I personally can trade, and I find some, then I trade them.
I realize there's an unfortunate schism wherein I am using your platform but not contributing to your business model, so if you have any ideas how I can help without wasting my time writing algos that only work high account levels, please let me know. Pairs trading/statistical arbitrage might be one solution, but I've found them very difficult to implement; anything that looks promising in Quantopian fails the backtest when using dividend-adjusted bid-ask tick data, so I might shift my focus back to building my own lower latency infrastructure for a while.
I would reintroduce the concept I proposed in an article in S&C last spring ; the directed acyclic graph or DAG. Using thousands of correlated or cointegrated pairs I built groups from them.
Cool. Yeah, pretty similar. The DAG though was used specifically to find the networked graph. Those trees might embody the same thing, not sure. But I'd guess the idea is approximate.
Why would anyone want to pairs trade when trading a Minimum Spanning Tree or correlated network graph of stocks is so much safer and easier? I've built dozens of pairs strategies and the directionality of the pair always broke the model. And all pairs I ever tested all went directional at some point -- beyond the account's ability to Martingale down.
Have people been coming up with good ones? If so, what proportion are using the new data sets? If not, why not, do you think that is?
I can't release any specific data on this. I can say that there's a lag between when we update product features/try to educate people about algorithm writing techniques (larger universe size, shorting), and when new strategies start appearing. We'd love more large universe strategies right now and I'm trying to figure out ways to make it easier for folks to develop large universe long-short strategies using pipeline.
I haven't been focusing on them at all, mostly because there's a problem of opportunity cost; if I spend all my time looking for equity long-short algos, not only is there a chance I don't find anything, but if I do, there's still a chance that Quantopian doesn't select it, and since I cannot trade them myself, that time is wasted (unless I pitch it to other funds I suppose). If I look for algos that I personally can trade, and I find some, then I trade them.
I realize there's an unfortunate schism wherein I am using your platform but not contributing to your business model, so if you have any ideas how I can help without wasting my time writing algos that only work high account levels, please let me know. Pairs trading/statistical arbitrage might be one solution, but I've found them very difficult to implement; anything that looks promising in Quantopian fails the backtest when using dividend-adjusted bid-ask tick data, so I might shift my focus back to building my own lower latency infrastructure for a while.
Totally reasonable. We don't release our product with the expectation that everybody will use it to develop strategies for the fund, we also want to support your use case of personal trading. We also understand there's a conflict between pushing people to write high capacity market neutral long-short strategies, when those will never work on their own money. What I'm trying to figure out is ways to make the workflow of producing and evaluating factors easier, because once you have a factor-based ranking system, it's pretty easy to slot that into an existing long-short algorithm using pipeline. I'm working on sharing a pipeline algorithm with the community and attaching it to the lectures page in an effort to get more cloning and tweaking going on.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
I share Simon's sentiment. I've continued to participate in the contests, but the idea of spending tens (hundreds?) of hours trying to come up with an uber algo that will compete with the big dogs sounds like a lot of work, with a very uncertain pay-off (it's not even clear that you are still working on the hedge fund. any substantive news?). The pipeline thingy has a bit of a learning curve, so I haven't taken that on yet (the fact that lots of obscure modules need to be imported is a red flag). That said, if there were good working examples that could be tweaked, I might give it a go.
What I'm trying to figure out is ways to make the workflow of producing and evaluating factors easier, because once you have a factor-based ranking system, it's pretty easy to slot that into an existing long-short algorithm using pipeline.
Why don't you get all of the Q eggheads together for 1 week and see if you can come up with a long-short algo that would be Q hedge-fundable, and publish it (and better yet, actually fund it). Not only would this provide an existence proof, but you should also gain some insight into the workflow and the person-hours to accomplish the task.
Here is a pipeline algorithm that I just published as the goto example of a long-short equity strategy. I'm sure it will go through many improvements as the public eye turns to it, but it should at least be a start. It's tricky because we do want to publish algorithms that are 95% of the way done, so that users can take the last 5% and improve the strategies in many different uncorrelated ways. With long-short equity most of the work is in choosing good factors and factor ranking techniques. Unfortunately those are the type of signals that will disappear when shared publicly, but the actual machinery to trade within the algorithm should stay pretty consistent. If you're maybe looking to learn pipeline a bit, I would recommend going through Lectures 17 and 18, then looking at the algorithm.
I can say for certain we are working on the hedge fund. Even if you have strategies that aren't consistently winning the contest, we may be interested in an algorithm that can consistently do ok. Ultimately, my job as the one overseeing the lectures is to keep trying to make it easier so people don't have to spend as much time working on algorithms that may never pay off for them, and so we get more algorithms that do pay off in the long run.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
I start to implement pair trading backtesting in research environment instead of IDE. The main reason is to automatic run multiple pairs performance analysis before I jump into IDE for full backtest. Another reason for this work is to do further analysis for returns from many pairs.
I am wondering where I can find the example of backtesting in research environment to start with. Any comment is very appreciated.
In your research environment there should be a 'Tutorials and Documentation' مجلد. Inside the folder should be a notebook with the title 'Tutorial (Advanced) - Backtesting with Zipline'. Make a copy of that and let me know if that's enough to get you started.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
May 28 algo falls below benchmark if extended to date and -43% PvR with default slippage and commissions, tanking thru 2018.
Hope it can be rescued b/c it shows good potential.
The example strategies cheat and run on the same timeframe over which we did research and found the securities to be cointegrated. In a real strategy you'd want to find pairs that were cointegrated into the future and not just historically cointegrated. The template should stay largely the same, so it's an issue of swapping in new securities that you have statistical evidence will stay cointegrated.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Could you post a tutorial on calibrating an Ornstein Uhlenbeck process for mean reverting series residuals?
We've added a lecture on this to our queue. No idea when we might currently get to it, but it's on there.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Ages ago I posted, perhaps as anonymole, that a "pair" needn't be made of only two securities. In fact, the whole "we only allow low beta strats" mantra is pretty much an argument that all strategies should be a variation of a pairs strat. That is, over all, a market neutral position is best.
Taking this further however, and applying a more formal model to the pairs strategy (that the security set have a "story" attached to it) I wonder if the two halves of the pair would do better as independent baskets of securities. That if one approached a pairs strategy with the mind to match up two behaviorally opposed baskets of securities that instead of trying to search all pair combinations looking for all the super-great-marvelous attributes a pair should have, that instead, one determine the two sides of the pair coin and fill each side with the most appropriately identified securities -- for each side.
A simplistic model might be described thusly:
Equities which cycle up in the spring/summer and down in the fall/winter would be bundled together and set against equities which cycle oppositely (down in the summer, up in the winter).
No doubt there are more interesting or undiscovered cycles that exist. My point is that rather than identify securities that yin and yang, one discover technical, or macro, or fundamental classifications which zig when the other zags. Then find securities which fit each of those baskets of behavior.
This is a very interesting idea and definitely something that professional quants do. At the core we just want two assets on either side of a pair, and a portfolio of assets will do just as well as a single equity. There are probably pros and cons of each method, but the idea of using a basket of things rather than a single thing can greatly reduce your position concentration risk and lead to a better algorithm. I'd say it's worth research. You'd still likely want a few different pairs of baskets as each would smooth out the return curve of the other and produce a lower volatility algorithm.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
I have to run an errand, so I only have five minutes, but hopefully I can be clear in that time.
To demonstrate the chops of an AI system, I created an algorithm that can represent the small changes in stocks price, as the sum of a set of ETFs. For example, with MSFT one might have XLK, XLY, FXE, FXI, and some others.
I can show that the typical price movements during a day can be represented in this way. However, when there is specific news, then it is no longer true, if the news is strong.
What I believe this shows is that instead of things "returning to the mean" they are in fact not moving arbitrarily and so, if they return to the mean, it is because one of the underlying components in fact moved. (Of all the underlying components, usually only one or two have news, and the rest are balancing each other out, once the price has adjusted.)
How might one design a trading platform for this as even if you do know it is the sum of other waveforms that are causing one waveform, one still doesn't know what causes them to move until after the fact.
(the reduction in influence is 1/1.6 when looking at the components, so after a couple of feedback loops, the influence is not measurable. Thanks, and sorry for the hurried note,
Have you read Algorithmic Trading written by Ernie Chan? For sure you read it, I have a question: in fact I am not good in programming and working with Matlab, I am really interested in Currency cross rate part of the book and I want to implement the positions in live trading but I don't know how to do that in fact I can't understand what the numbers as positions mean! If somebody can guide me I'm really appreciated.
Not entirely sure I'm understanding your thesis but it seems that you've created an expression that models the returns of a specific stock from it's sector exposures. This is actually a common risk modeling tactic, check out my notebook here. To build a trading strategy off of this I would take your hypothesis about changing news and use that to alter the coefficients of your model. A cool place to start would be to check out the lectures on factor modeling and then maybe look at some news/sentiment data sets to see if you can find any anomalies.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
That is close. It models the returns to within a few cents usually, at any moment in time, depending on the stock and its volatility as a sum of its sectors. (except when it has specific news.) What I envision behind it is a large set of funds using NLP to invest by sector based on news. Because they are so large, then they tend to swamp out the market during normal times.
I can also show that stock prices changes are directly proportional to the sum of the underlying sectors information, for most time periods. For example, the price changes for three months show this and also for three weeks, which is a bit chaos like, as it would seem they wouldnt be so perfectly in tune. Anyway, with this I can sort stocks by their overall market efficiency (the more efficient you are, the more you sync with the relationship stated above).
I also believe that there are huge funds that are interested in doing nothing more than treading water (as one possible explanation) and they move their money around the world, just trying to stay even, and so the result is that at any given time, the sum of everything stays near zero. (when one thing goes up somewhere, something else somewhere else goes down.)
These relationships also break down during periods of very high volatility such as fall 2018.
There are other things I am able to quantify, but again have no idea how to use. When information about a specific stock or sector hits the market, it is my observation that the more objective the information, the faster the market responds, and the more subjective it is, the slower the market responds.
For example, when Ackman says that HLF is a pyramid scheme, then it can sometimes be hours, and sometimes even days before that news is no longer affecting the price of the stock, but when an analyst upgrades or downgrades a stock, that is more objective and the entire price adjustment is over in fifteen minutes. (If you subtract out market movements then an analysts announcement looks like a log curve, with most of the action in the beginning and a bit of a ringing at the last.)
Again, this all happens too fast to be of use, and it is after the fact that I can say, "That was subjective."
I don't think I am able to alter the coefficients as you suggest. I am using a hard coded take on a system of recursive polynomials for my modeling, so there are billions of coefficients.
Hi, I have a quick and possibly dumb question. Why did you use the ratio instead of the difference between S1 and S2 in the Quantopain pairs trading lecture? In the co-integration lecture, you use the difference instead. In other sources, they use the difference as well.
There's an updated notebook, algorithm, and video available on the lecture series page.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
And as a response to pandasaurus' question, which I unfortunately just saw, we have removed the ratio as it was a typo in the lecture.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Greetings Quantopian Community,
I was at the NYC Event on Pairs Trading, and the current example algorithm is deprecated, such that one cannot deploy it in live trading. With this fix, users can now deploy the algorithm in live trading. The fix is hosted as a pull request on github--thanks.
شكرا جزيلا. Could you please submit your PR to the following repo? It's where we store lectures and examples. Doesn't quite fit in the current form of zipline.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Thanks, Delaney. I submitted the PR to the specified branch.
شكر! Delaney. I am finishing my graduation thesis these days, Your work may help me a lot.
That's great to hear, Dzi. Hope it goes well!
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
I have question in regards to high frequency pairs trading using bid/ask price. One thing that I noticed is during an entry signal if I'm supposed to go long in one and short the other, the Long position that I enter would be using the ask price and this ask price normally is higher than the bid price, so when my exit signals to exit, my bid price that I close my position at will often cause me to loose than make money. What are some of the ways to prevent this from happening or what are some strategies that goes hand in hand with trading high frequently with pairs strategy. Further, how are limit orders used with the bid/ask price.
If you need to make the spread in order for the strategy to be profitable, then you are squarely competing with high-frequency market makers, and it's a whole different ball game. You are unlikely to win. If you have control over the specific order types you send, you could attempt to use mid-point pegs or something, but as soon as you admit any sort of limit orders where execution is not immediate, you now need to be concerned about being exposed unhedged, which is something that you'll need to backtest. (not easy either). What some people do is try and rest or peg an order for the less liquid leg, and attempt to save some of the cost of the wider spread (though again, these days, you'll probably just get adversely selected for no net gain), and then as soon as that fills, you aggressively execute the hedge leg across the narrower spread.
How does one use both bid and ask z score in high frequency trading? For simplicity, I can understand using z score, but when it comes to using both bid and ask price z score, I have trouble picturing how it is used.
Simon's right, mid-frequency strategies generally should be fairly robust to bid-ask spreads. If they're not the edge is probably too small to be consistently profitable. For high frequency trading you do have to consider the bid and ask in many different ways, as your trading will be very sensitive to movements in both. How exactly you use the data would depend on your model.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
You can imagine that the spread is a synthetic asset. For instance, X = 1L -1S so a single unit of X is long one unit of L and short one unit of S. If you need to buy one unit of X immediately, you will buy at the ask of L and sell at the bid of S. If you need to sell one unit of X, you will sell at the bid of L and buy at the ask of S.
You can then easily calculate the bid and ask for X, you have just two "z-scores" to deal with. Then, if you like, you can delay buying until the X_ask_zscore < threshold, and delay selling until the X_bid_zscore > exit_threshold.
أتمنى أن يساعدك هذا.
I had a chance to see this notebook before and I would recommend it to everyone here. Lots of amazing info can be found inside.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان. وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Hey Simon. thanks for that last post. I've been thinking through the logic behind that, but I do have some questions. Hope you don't mind explaining or expanding on it a little. 1) If I understood you correctly you mean X being the spread between a pair? in other words one unit of X immediately to be traded immediately, I would think that you will buy at the ask of X rather than L to be immediate wouldn't you? One problem that I would encounter by buying one unit of X at the ask price of L would be that the ask price of L may not be the lowest ask price of X and therefore may cause me to still queue to purchase the unit of X or not even fill. Can you say a little more in regards to this?
2) Further, there is one concept that I'm having a hard time to understand. Let's say that my Z score > entry threshold of +2. I would short L by one unit by selling one unit of L at the bid price of L and go long one unit of Y at the ask price of Y. Assuming hedge ratio is 1 and all. When my Z score < exit threshold of say 0.2. I would then exit my short and long position of the pair. The issue that I would encounter assuming no fees and all is that I would loose money during these trades. I'm having a hard time understanding why that would be if my Z score returned to or close to mean. Is the reason behind this due to the fact that the volatility of the bid/ask price may not be high enough to allow the difference in the entry and exit bid/ask spread price at the start and end of the transaction to pull far enough to earn money?
Please take a look at the last part of the page for this link that shows the true correlations, which are arrived at by saying "from the point of view of a pairs trader, how correlated are these tickers."
If you know how to subtract out the part of the market that floats all boats, to be left only with the information pertaining to neutral, there are extreme correlations. XLK is the ticker used in the example, but there are a thousand I could have used. When you know how to subtract out all but the neutral information, the market becomes completely different in how it appears.
Scroll to the very bottom of the article and look at the two tables with correlation information. These numbers are this way because there is so much interest in pairs trading that it tends to swamp things out. It is even more pronounced in Europe.
1) I think you are getting a bit confused; X is not a real thing, it's a synthetic asset formed by the basket of L and S. X has a price to buy and a price to sell which you calculate from the bids and asks of the components. If you cross the spread, generally, you trade immediately in small enough size. You only have uncertainty about fills if you try to earn the spread. That gets much more difficult.
2) Maybe. If your trades are not making money, I mean, that's a big problem. I can't answer why they are not making money. It could be transaction costs like the bid/ask spreads, you should analyze the volatility of your baskets as a function of the bid/ask spreads you have to pay. If you have to cross four 5-cent spreads to try and capture a spread mean-reversion of 2 cents, well yeah you are going to have problems. A bigger problem I found was that mean reversion happens one of two ways; either the asset reverts to the mean, or the mean converges with the asset (assuming you are constantly recomputing the mean, which seems to be common practice). In both cases your z-score goes back to zero, but only in the first case do you make any money.
@daniel I read your article, the correlations at the end, are those of prices, or returns ?
Thanks for clearing that up for me. The idea of using synthetic assets is relatively new to me. I went and researched it a little and noticed that it is often used to capture streams of cash flow. I'm currently trying to perform residual pairs trading with Chinese Future Contracts. As I research it for the use of Futures, I don’t really find much articles or explanations. Is it applicable to Futures?
At the same time, I'm relatively new at this and trying to go through the lectures and stuff to learn. When you say I should analyze the volatility of my baskets as a function of the bid/ask spreads. Do you know where I can find a lecture that discuss this further? Sorry to ask some fundamental questions. One thing I notice in my data is that the bid/ask spread is really small and by small the it is just a spread of one tick of the futures contract; while the Volume for that tick is also small just around 80 or less contracts for either bid or ask.
The correlations are about prices, but just a subset.
(I have edited this down, as compared to what you probably have in email. Please don't copy anything from the email onto the board.)
James - maybe? You need pairs/baskets with enough variance to profitably trade the mean reversion. There tends to be a spectrum; structurally correlated assets (like ETF vs their component baskets) are perfect to trade, so perfect, that everyone does it and therefore the deviations are probably less than the spread. Then there's really shitty pairs which you find doing brute force analysis of the stock market. These have lots of variance, but they probably don't converge, and/or the relationship is totally spurious. Read closely Aaron Brown's posts on this thread. You want something in the middle.
Danial - I am not sure how useful correlations of prices of any kind are ? They are bound to be super high.
By itself I don't believe there is any one thing that is useful for a neutral strategy.
My approach is to look at the market as being represented by several hundred core waveform, and similar to the idea of Fourier Transform, you can use these fundamental waveform to create the 4000 heaviest played stocks. So, basically everything I believe about the market is based on the idea of correlations, as this is what I used as one of the first steps to find those wave forms. (which are not easy to find.)
Consider if you have Tickers AAA and BBB, and they are two similar stocks.
AAA might have as its composite the waves A, B, C, D, E, F, G, H, I, J, and BBB may have D, E, F, G, H, I, J, K, L.
During the times that there is little to no activity in the components A, B, C, K, L then the two tickers would be nearly perfectly correlated. But if suddenly component A had news (for example), then the perfect correlations would no longer hold, since stock BBB does not have an A component waveform..
If you apply the above to the idea of mean reversion, then you can see what I believe the mean reversion strategy is actually about.
In my opinion the best way to play a neutral strategy would be to devise a portfolio that is about the underlying fundamental wave components..
And in the interest of completeness, I will mention that in the above examples, waves A, B, C, etc are also made of composite waves, (and those composites . ) as the market is self referencing. The several hundred are at the bottom of the self referencing, and are something that exists in theory, that I believe I could "easily" find, but have not spent the time and energy to do so as of this date.
I also believe that if I had data for all the major markets of the world and was able to deduce the underlying component waves for those instruments that are heavily played by the collectively speaking, multi-trillion dollar funds, that the sum of these waves would (except for inflation) most of these times sum to be zero.
Some researchers generate the log price series of two equities with the daily close. Then the spread series is estimated using regression analysis based on log price series data. For equities X and Y, they run linear regression over the log price series and get the coefficient β.
Any reason they use log price series instead?
عذرا، هناك خطأ ما. حاول مرة أخرى أو اتصل بنا عن طريق إرسال الملاحظات.
لقد أرسلت بنجاح تذكرة دعم.
سيكون فريق الدعم لدينا على اتصال قريبا.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان.
وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان.
وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.
Pair trading strategy cointegration
A related paper has been added to:
#12 - Pairs Trading with Stocks.
Title: Cointegration and Relative Value Arbitrage.
Notable quotations from the academic research paper:
"In the pairs trading literature, the most common type of relative value arbitrage, substitutes for individual stocks are identified by minimizing the Euclidean distance in the daily price space over a historical period.5 Matching stocks over the price space instead of the return space is consistent with short-term relative value trading strategies, while removing the need to specify factors. Although the matching method is simple to perform, by design, it guarantees the existence of a counterpart for every stock, which is counterintuitive. More importantly, stocks that exhibit little variation in the price pattern over the formation period (possibly due to lack of news flow) would end up being labelled close substitutes, although they are not fundamentally related.
In this paper, we propose a simple method of identifying close economic substitutes using cointegration. When a pair of stock prices is cointegrated, one series co-moves with a scaled version of the other. We show that close economic substitutes can be represented by a system of cointegrated prices where the scaling factor, or the cointegration coefficient, is close to one.
We find that from 1962 to 2018, NonParity, a positive-valued metric of closeness that measures the distance of the cointegration coefficient from unity, strongly predicts both the probability that relative mispricing will subsequently be corrected as well as the profitability of the arbitrage trade. A one standard deviation increase in the variable reduces the convergence probability by seven percentage points and pairs trade payoffs by 2.78 percentage points. Further, predictability through NonParity also presents profitable trading opportunities. At the portfolio level, the pairs trading of cointegrated stocks is generally unprofitable. However, when trading is confined to pairs of stocks with NonParity close to zero, the strategy is profitable after reasonable estimates of brokerage, slippage, and short selling costs. Specifically, over the sample period, the average after-cost risk-adjusted return to trading a portfolio of cointegrated pairs with NonParity less than 0.5 (0.2) is 0.43% per month, with a t-statistic of 5.29 (0.58% per month, with a t-statistic of 4.77)."
Statistics Behind Pair Trading (I): Understanding Correlation and Cointegration.
In pair trading, usually a pair of stocks is traded in a market neutral strategy, i. e. it doesn’t matter whether market is trending upwards or downwards, the two open positions for each stock hedge against each other. To be able to pair trade, the key challenges are to:
Choose a pair which will give you good statistical arbitrage opportunities over time Choose the entry/exit points.
In this post, we will discuss in details how statistics play a crucial role in the first challenge of deciding the pair to trade. The pair is commonly chosen from the same basket of stocks for instance, Microsoft and Google (technology domain) or ICICI & Axis (Banking) or Nifty Index and MSCI index (market indices). Among each domain, there are thousands of pairs are possible. The best ones are those which are based on mathematical or statistical tests.
علاقه مترابطه.
Though not common, a few pair trading strategies look at correlation to find a suitable pair to trade. Correlation is measurement of relationship between two variables, in this case, log returns of prices of stocks A and B. If correlation is high, say 0.8, traders may choose that pair. This high number represents a strong relationship between the two stocks. So if A goes up, the chances of B going up are also quite high. Based on this assumption a market neutral strategy is played where A is bought and B is sold; bought and sold decisions are made based on their individual patterns.
Just looking at correlation might give you spurious results. For instance, if your strategy is based on the spread between the prices of the two stocks, it is possible that the prices of the two stocks keep on increasing without ever mean reverting.
Spread = log(a) – n log(b), where ‘a’ and ‘b’ are prices of stocks A and B respectively. For each stock of A bought you have sold n stocks of B.
Now, both ‘a’ and ‘b’ increases in such as way that the value of spread decreases. This will result in a loss since stock A is increasing at a rate lower than stock B and you are short on stock B.
Cointegration.
The most common test for pair trading is the co integration test. Cointegration is a statistical property of two or more time series variables which indicates if a linear combination of the variables is stationary. Let us understand this statement above. The two time series variables in this case are the log of prices of stocks A and B. Linear combination of these variables can be a linear equation defining the spread:
Spread = log(a) – n log(b), where ‘a’ and ‘b’ are prices of stocks A and B respectively. For each stock of A bought you have sold n stocks of B.
If A and B are cointegrated then it implies that this equation above is stationary. A stationary process has very valuable features which are required to model pair trading strategies. For instance, in this case if the equation above is stationary, that suggests that the mean and variance of this equation remains constant over time. So if we start with ‘n’, which is called the hedge ratio, so that spread = 0, the property of stationary implies that expected value of spread will remain as 0. Any deviation from this expected value is a case for statistical abnormality, hence a case for trading!
How to choose a pair of stocks for trading?
For any pair of two stocks, define the spread as below:
Spread = log(a) – n log(b), where ‘a’ and ‘b’ are prices of stocks A and B respectively.
Assumption: n , the hedge ratio, is a constant.
Calculate ‘n’ using regression so that spread is as close to 0 as possible. Hence, we regress the stock prices to calculate the hedge ratio.
Theory: In regression, we get a term called the residuals which represents the distance of observed value from the curve fitting line or estimated value. These residuals tell us how much the actual value of ‘spread’ deviates from 0 for the calculated ‘n’. These residuals are studied so that we understand whether or not they form a trend. If they do not form a trend, that means the spread moves around 0 randomly and is stationary.
Run the Dicky Fuller test on the spread (more complicated and popular version is called Augmented Dicky Fuller Test or ADF) values inserting the value of ‘n’. DF test is a hypothesis test which gives pValue as the result. If this value is less than 0.05 or 0.01, we can say with 95% or 99% confidence that the signal is stationary and we can choose this pair.
In our next blog, we will work out the statistics involved in deciding the entry and exit signals of a pair trading strategy.
Comments
Post a Comment